CATEGORIFIED TRACE FOR MODULE TENSOR CATEGORIES OVER BRAIDED TENSOR CATEGORIES

被引:0
|
作者
Henriques, Andre [1 ]
Penneys, David [2 ]
Tener, James [3 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[2] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
来源
DOCUMENTA MATHEMATICA | 2016年 / 21卷
基金
美国国家科学基金会;
关键词
MONOIDAL CATEGORIES; FROBENIUS ALGEBRAS; SUBFACTORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a braided pivotal category C and a pivotal module tensor category M, we define a functor Tr-C : M -> C, called the associated categorified trace. By a result of Bezrukavnikov, Finkelberg and Ostrik, the functor Tr-C comes equipped with natural isomorphisms tau(x,y) : Tr-C (x circle times y) -> Tr-C (y circle times x), which we call the traciators. This situation lends itself to a diagramatic calculus of 'strings on cylinders', where the traciator corresponds to wrapping a string around the back of a cylinder. We show that Tr-C in fact has a much richer graphical calculus in which the tubes are allowed to branch and braid. Given algebra objects A and B, we prove that Tr-C(A) and Tr-C(A circle times B) are again algebra objects. Moreover, provided certain mild assumptions are satisfied, Tr-C (A) and Tr-C (A circle times B) are semisimple whenever A and B are semisimple.
引用
收藏
页码:1089 / 1150
页数:62
相关论文
共 50 条