CATEGORIFIED TRACE FOR MODULE TENSOR CATEGORIES OVER BRAIDED TENSOR CATEGORIES
被引:0
|
作者:
论文数: 引用数:
h-index:
机构:
Henriques, Andre
[1
]
Penneys, David
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USAUniv Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
Penneys, David
[2
]
Tener, James
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USAUniv Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
Tener, James
[3
]
机构:
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[2] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Given a braided pivotal category C and a pivotal module tensor category M, we define a functor Tr-C : M -> C, called the associated categorified trace. By a result of Bezrukavnikov, Finkelberg and Ostrik, the functor Tr-C comes equipped with natural isomorphisms tau(x,y) : Tr-C (x circle times y) -> Tr-C (y circle times x), which we call the traciators. This situation lends itself to a diagramatic calculus of 'strings on cylinders', where the traciator corresponds to wrapping a string around the back of a cylinder. We show that Tr-C in fact has a much richer graphical calculus in which the tubes are allowed to branch and braid. Given algebra objects A and B, we prove that Tr-C(A) and Tr-C(A circle times B) are again algebra objects. Moreover, provided certain mild assumptions are satisfied, Tr-C (A) and Tr-C (A circle times B) are semisimple whenever A and B are semisimple.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Giorgetti, Luca
Rehren, Karl-Henning
论文数: 0引用数: 0
h-index: 0
机构:
Georg August Univ Gottingen, Inst Theoret Phys, Friedrich Hund Pl 1, D-37077 Gottingen, GermanyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy