Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules

被引:126
|
作者
Gu, Yangshuo [1 ,2 ]
Wang, Yi-Ning [1 ,2 ]
Wei, Jing [1 ,2 ]
Tang, Chuyang Y. [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Singapore Membrane Technol Ctr, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Forward osmosis (FO); Organic fouling; Thin film composite polyamide; Cellulose triacetate; Macromolecules; PRESSURE RETARDED OSMOSIS; HOLLOW-FIBER MEMBRANES; INTERNAL CONCENTRATION POLARIZATION; REVERSE-OSMOSIS; NANOFILTRATION MEMBRANES; FLUX BEHAVIOR; PROCESS PERFORMANCE; SURFACE PROPERTIES; WASTE-WATER; ACID;
D O I
10.1016/j.watres.2013.01.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fouling of cellulose triacetate (CTA) and thin-film composite (TFC) forward osmosis (FO) membranes by organic macromolecules were studied using oppositely charged lysozyme (LYS) and alginate (ALG) as model foulants. Flux performance and foulant deposition on membranes were systematically investigated for a submerged membrane system. When an initial flux of 25 L/m(2)h was applied, both flux reduction and foulant mass deposition were severe for feed water containing the mixture of LYS and ALG (e.g., 50% LYS and 50% ALG at a total foulant concentration of 100 mg/L). In comparison, fouling was much milder for feed water containing either LYS or ALG alone. Compared to the CTA FO membrane, the TFC PO membrane showed greater fouling propensity under mild FO fouling conditions due to its much rougher surface. Nevertheless, under severe FO fouling conditions, fouling was dominated by foulant-deposited-foulant interaction and membrane surface properties played a less important role. Furthermore, when the feed water contained both LYS and ALG in sufficient amount, the deposited cake layer foulant composition (i.e., the LYS/ALG mass ratio) was not strongly affected by membrane types (CTA versus TFC) nor testing modes (pressure-driven NF mode versus osmosis-driven PO mode). In contrast, solution chemistry such as pH and calcium concentration had remarkable effect on the cake layer composition due to their effects on foulant-foulant interaction. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1867 / 1874
页数:8
相关论文
共 50 条
  • [31] Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination
    Han, Gang
    Chung, Tai-Shung
    Toriida, Masahiro
    Tamai, Shoji
    JOURNAL OF MEMBRANE SCIENCE, 2012, 423 : 543 - 555
  • [32] Merits of using cellulose triacetate as a substrate in producing thin-film composite nanofiltration polyamide membranes with ultra-high performance
    Ang, Micah Belle Marie Yap
    Luo, Zheng-Yen
    Marquez, Jazmine Aiya D.
    Tsai, Hui-An
    Huang, Shu-Hsien
    Hung, Wei-Song
    Hu, Chien-Chieh
    Lee, Kueir-Rarn
    Lai, Juin-Yih
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2020, 112 (251-258) : 251 - 258
  • [33] Tailoring the Polyamide Active Layer of Thin-Film Composite Forward Osmosis Membranes with Combined Cosolvents during Interfacial Polymerization
    Li, Yu
    Pan, Guoyuan
    Wang, Jing
    Zhang, Yang
    Shi, Hongwei
    Yu, Hao
    Liu, Yiqun
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (17) : 8230 - 8242
  • [34] Biodegradation of cellulose triacetate and polyamide forward osmosis membranes in an activated sludge bioreactor: Observations and implications
    Luo, Wenhai
    Xie, Ming
    Hai, Faisal I.
    Price, William E.
    Nghiem, Long D.
    JOURNAL OF MEMBRANE SCIENCE, 2016, 510 : 284 - 292
  • [35] Porosity of some commercial reverse osmosis and nanofiltration polyamide thin-film composite membranes
    Kosutic, K
    Kastelan-Kunst, L
    Kunst, B
    JOURNAL OF MEMBRANE SCIENCE, 2000, 168 (1-2) : 101 - 108
  • [36] Evaluation of a mixture of amines for the preparation of the polyamide layer of the thin-film nanocomposite membranes for forward osmosis
    Kumar, Rajesha
    Salman, Maha
    Al-Haddad, Saleh
    DESALINATION AND WATER TREATMENT, 2017, 78 : 49 - 56
  • [37] Structural Characterization of Thin-Film Polyamide Reverse Osmosis Membranes
    Albo, Jonathan
    Hagiwara, Hideaki
    Yanagishita, Hiroshi
    Ito, Kenji
    Tsuru, Toshinori
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (04) : 1442 - 1451
  • [38] Boron transport through polyamide-based thin film composite forward osmosis membranes
    Fam, Winny
    Phuntsho, Sherub
    Lee, Jong Hwa
    Cho, Jaeweon
    Shon, Ho Kyong
    DESALINATION, 2014, 340 : 11 - 17
  • [39] Fabrication of a novel cyanoethyl cellulose substrate for thin-film composite forward osmosis membrane
    Zheng, Ke
    Zhou, Shaoqi
    BLUE-GREEN SYSTEMS, 2019, 1 (01) : 18 - 32
  • [40] Preparation and Properties of Thin-Film Composite Forward Osmosis Membranes Supported by Cellulose Triacetate Porous Substrate via a Nonsolvent-Thermally Induced Phase Separation Process
    Han, Jian-Chen
    Xing, Xiao-Yan
    Wang, Jiang
    Wu, Qing-Yun
    MEMBRANES, 2022, 12 (04)