Engineering quantum Hall phases in a synthetic bilayer graphene system

被引:8
|
作者
Cian, Ze-Pei [1 ,2 ]
Grass, Tobias [1 ,2 ,3 ]
Vaezi, Abolhassan [4 ]
Liu, Zhao [5 ]
Hafezi, Mohammad [1 ,2 ,6 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[4] Sharif Univ Technol, Dept Phys, Tehran 1458889694, Iran
[5] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[6] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
SKYRMIONS; EXCITATIONS; STATISTICS; HIERARCHY; INTEGER; STATES; WELLS;
D O I
10.1103/PhysRevB.102.085430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Synthetic quantum Hall bilayer (SQHB), realized by optically driven monolayer graphene in the quantum Hall regime, provides a flexible platform for engineering quantum Hall phases as discussed in Ghazaryan et al. [Phys. Rev. Lett. 119, 247403 (2017)]. The coherent driving which couples two Landau levels mimics an effective tunneling between synthetic layers. The tunneling strength, the effective Zeeman coupling, and two-body interaction matrix elements are tunable by varying the driving frequency and the driving strength. Using infinite density matrix renormalization group techniques combined with exact diagonalization, we show that the system exhibits a non-Abelian bilayer Fibonacci phase at filling fraction nu = 2/3. Moreover, at integer filling nu = 1, the SQHB exhibits quantum Hall ferromagnetism. Using Hartree-Fock theory and exact diagonalization, we show that excitations of the quantum Hall ferromagnet are topological textures known as skyrmions.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [41] Theory of integer quantum Hall effect in insulating bilayer graphene
    Roy, Bitan
    PHYSICAL REVIEW B, 2014, 89 (20)
  • [42] Band topology and the quantum spin Hall effect in bilayer graphene
    Prada, E.
    San-Jose, P.
    Brey, L.
    Fertig, H. A.
    SOLID STATE COMMUNICATIONS, 2011, 151 (16) : 1075 - 1083
  • [43] Quantum Hall effect in bilayer graphene: Disorder effect and quantum phase transition
    Ma, R.
    Sheng, L.
    Shen, R.
    Liu, M.
    Sheng, D. N.
    PHYSICAL REVIEW B, 2009, 80 (20)
  • [44] Quantum cascade of correlated phases in trigonally warped bilayer graphene
    Anna M. Seiler
    Fabian R. Geisenhof
    Felix Winterer
    Kenji Watanabe
    Takashi Taniguchi
    Tianyi Xu
    Fan Zhang
    R. Thomas Weitz
    Nature, 2022, 608 : 298 - 302
  • [45] Quantum cascade of correlated phases in trigonally warped bilayer graphene
    Seiler, Anna M.
    Geisenhof, Fabian R.
    Winterer, Felix
    Watanabe, Kenji
    Taniguchi, Takashi
    Xu, Tianyi
    Zhang, Fan
    Weitz, R. Thomas
    NATURE, 2022, 608 (7922) : 298 - +
  • [46] Magnetic and lattice ordered fractional quantum Hall phases in graphene
    An, Jincheng
    Balram, Ajit C.
    Murthy, Ganpathy
    PHYSICAL REVIEW B, 2024, 110 (08)
  • [47] Light-Induced Fractional Quantum Hall Phases in Graphene
    Ghazaryan, Areg
    Grass, Tobias
    Gullans, Michael J.
    Ghaemi, Pouyan
    Hafezi, Mohammad
    PHYSICAL REVIEW LETTERS, 2017, 119 (24)
  • [48] Wigner crystal and bubble phases in graphene in the quantum Hall regime
    Zhang, C.-H.
    Joglekar, Yogesh N.
    PHYSICAL REVIEW B, 2007, 75 (24):
  • [49] Competing Fractional Quantum Hall and Electron Solid Phases in Graphene
    Chen, Shaowen
    Ribeiro-Palau, Rebeca
    Yang, Kang
    Watanabe, Kenji
    Taniguchi, Takashi
    Hone, James
    Goerbig, Mark O.
    Dean, Cory R.
    PHYSICAL REVIEW LETTERS, 2019, 122 (02)
  • [50] Spectrum of edge states in the ν=0 quantum Hall phases in graphene
    Pyatkovskiy, P. K.
    Miransky, V. A.
    PHYSICAL REVIEW B, 2014, 90 (19)