Engineering quantum Hall phases in a synthetic bilayer graphene system

被引:8
|
作者
Cian, Ze-Pei [1 ,2 ]
Grass, Tobias [1 ,2 ,3 ]
Vaezi, Abolhassan [4 ]
Liu, Zhao [5 ]
Hafezi, Mohammad [1 ,2 ,6 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[4] Sharif Univ Technol, Dept Phys, Tehran 1458889694, Iran
[5] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[6] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
SKYRMIONS; EXCITATIONS; STATISTICS; HIERARCHY; INTEGER; STATES; WELLS;
D O I
10.1103/PhysRevB.102.085430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Synthetic quantum Hall bilayer (SQHB), realized by optically driven monolayer graphene in the quantum Hall regime, provides a flexible platform for engineering quantum Hall phases as discussed in Ghazaryan et al. [Phys. Rev. Lett. 119, 247403 (2017)]. The coherent driving which couples two Landau levels mimics an effective tunneling between synthetic layers. The tunneling strength, the effective Zeeman coupling, and two-body interaction matrix elements are tunable by varying the driving frequency and the driving strength. Using infinite density matrix renormalization group techniques combined with exact diagonalization, we show that the system exhibits a non-Abelian bilayer Fibonacci phase at filling fraction nu = 2/3. Moreover, at integer filling nu = 1, the SQHB exhibits quantum Hall ferromagnetism. Using Hartree-Fock theory and exact diagonalization, we show that excitations of the quantum Hall ferromagnet are topological textures known as skyrmions.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [31] Faraday rotation in bilayer and trilayer graphene in the quantum Hall regime
    Morimoto, Takahiro
    Koshino, Mikito
    Aoki, Hideo
    PHYSICAL REVIEW B, 2012, 86 (15):
  • [32] Electronic properties and the quantum Hall effect in bilayer graphene - Discussion
    Savchenko, A. K.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1863): : 219 - 219
  • [33] Quantum Hall effect in graphene with twisted bilayer stripe defects
    Lofwander, Tomas
    San-Jose, Pablo
    Prada, Elsa
    PHYSICAL REVIEW B, 2013, 87 (20)
  • [34] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal*
    Li, Zedong
    Wang, Z. F.
    CHINESE PHYSICS B, 2020, 29 (10)
  • [35] Unconventional fractional quantum Hall effect in monolayer and bilayer graphene
    Jacak, Janusz
    Jacak, Lucjan
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2016, 17 (01) : 149 - 165
  • [36] Landau Velocity for Collective Quantum Hall Breakdown in Bilayer Graphene
    Yang, W.
    Graef, H.
    Lu, X.
    Zhang, G.
    Taniguchi, T.
    Watanabe, K.
    Bachtold, A.
    Teo, E. H. T.
    Baudin, E.
    Bocquillon, E.
    Feve, G.
    Berroir, J-M.
    Carpentier, D.
    Goerbig, M. O.
    Placais, B.
    PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [37] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
    李泽东
    王征飞
    Chinese Physics B, 2020, 29 (10) : 495 - 499
  • [38] Transverse thermoelectric conductivity of bilayer graphene in the quantum Hall regime
    Wang, Chang-Ran
    Lu, Wen-Sen
    Lee, Wei-Li
    PHYSICAL REVIEW B, 2010, 82 (12):
  • [39] Phase diagram of the ?=2 quantum Hall state in bilayer graphene
    Khanna, Udit
    Huang, Ke
    Murthy, Ganpathy
    Fertig, H. A.
    Watanabe, Kenji
    Taniguchi, Takashi
    Zhu, Jun
    Shimshoni, Efrat
    PHYSICAL REVIEW B, 2023, 108 (04)
  • [40] Energy spectrum and quantum Hall effect in twisted bilayer graphene
    Moon, Pilkyung
    Koshino, Mikito
    PHYSICAL REVIEW B, 2012, 85 (19):