Advanced Flip-Chip Package Solution for 28nm Si Node and Beyond

被引:0
|
作者
Liu, C. S. [1 ]
Chen, C. S. [1 ]
Lee, C. H. [1 ]
Tsai, H. Y. [1 ]
Pu, H. P. [1 ]
Cheng, M. D. [1 ]
Kuo, T. H. [1 ]
Chen, H. W. [1 ]
Wu, C. Y. [1 ]
Lii, M. J. [1 ]
Yu, Doug C. H. [1 ]
机构
[1] Taiwan Semicond Mfg Co Ltd, Res & Dev, Hsinchu 30077, Taiwan
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Next generation flip chip package with <100um fine bump pitch is developed in a cost effective Bump-on-Trace (BOT) package structure for 28nm Si technology node. This is foreseen to be a mainstream for mobile applications in next generations. The key challenges of this new technology include warpage control of molded underfill (MUF) for < 4 mils of thin die, packaging yield due to finer pitch of bumping/substrate design and thermal/mechanical effect on chip-package-interaction (CPI) [1-2]. CPI due to the use of fragile extreme low-k (ELK) dielectric material in the back-end-of-line (BEOL) layers has been fully characterized. The well-integrated Si/bump/package processes enable reliable CPI and assembly yield. An aggressive and reliable Si/bump/package design and CPI approaches are also discussed.
引用
收藏
页码:436 / 438
页数:3
相关论文
共 50 条
  • [41] Flip-chip fabrication of advanced micromirror arrays
    Michalicek, MA
    Bright, VM
    SENSORS AND ACTUATORS A-PHYSICAL, 2002, 95 (2-3) : 152 - 167
  • [42] Mechanical Characterization Comparison as Flip-Chip Package to Fan-Out Package
    Chen, Dao-Long
    Sung, Po-Hsien
    Yin, Wei-Jie
    Shih, Meng-Kai
    Tarng, David
    Hung, Chih-Pin
    2018 INTERNATIONAL CONFERENCE ON ELECTRONICS PACKAGING AND IMAPS ALL ASIA CONFERENCE (ICEP-IAAC), 2018, : 266 - 269
  • [43] A high-quality spacer oxide formation for 28nm technology node and beyond
    Zhang, Bin
    Xiang, Yanghui
    Deng, Hao
    Guo, Shibi
    Zhang, Beichao
    CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2012 (CSTIC 2012), 2012, 44 (01): : 407 - 410
  • [44] THE STUDY OF SHALLOW TRENCH ISOLATION GAP-FILL FOR 28NM NODE AND BEYOND
    Bao, Yu
    Zhou, Xiaoqiang
    Sang, Ningbo
    Lei, Tong
    Shi, Gang
    Yi, Hailan
    Zhong, Bin
    Zhou, Jun
    Li, Fang
    Ding, Yi
    Li, Runling
    Zhou, Haifeng
    Fang, Jingxun
    2015 China Semiconductor Technology International Conference, 2015,
  • [45] Proximity Communication Flip-Chip Package with Micron Chip-to-chip Alignment Tolerances
    Sze, T.
    Giere, M.
    Guenin, B.
    Nettleton, N.
    Popovic, D.
    Shi, J.
    Bezuk, S.
    Ho, R.
    Drost, R.
    Douglas, D.
    2009 IEEE 59TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, VOLS 1-4, 2009, : 966 - +
  • [46] Challenges of thin core substrate flip chip package on advanced Si nodes
    Chiu, Christine
    Chang, K. C.
    Wang, Jones
    Lee, C. H.
    57TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, 2007 PROCEEDINGS, 2007, : 22 - +
  • [47] Backend-of-Line Reliability Improvement Options for 28nm Node Technologies and Beyond
    Aubel, O.
    Hennesthal, C.
    Hauschildt, M.
    Beyer, A.
    Poppe, J.
    Talut, G.
    Gall, M.
    Hahn, J.
    Boemmels, J.
    Nopper, M.
    Seidel, R.
    2011 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE AND MATERIALS FOR ADVANCED METALLIZATION (IITC/MAM), 2011,
  • [48] Application of Underfill for Flip-Chip Package Using Ultrasonic Bonding
    Noh, Bo-In
    Koo, Ja-Myeong
    Jo, Jung-Lae
    Jung, Seung-Boo
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (05) : 4257 - 4261
  • [49] Backside Alpha-Irradiation Test in Flip-Chip Package in EUV 7 nm FinFET SRAM
    Uemura, Taiki
    Chung, Byungjin
    Jo, Jeongmin
    Jiang, Hai
    Ji, Yongsung
    Jeong, Tae-Young
    Ranjan, Rakesh
    Lee, Seungbae
    Rhee, Hwasung
    Pae, Sangwoo
    Lee, Euncheol
    Choi, Jaehee
    Ohnishi, Shota
    Machida, Ken
    2020 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2020,
  • [50] THERMAL STRESS-FREE PACKAGE FOR FLIP-CHIP DEVICES
    KOHARA, M
    HATTA, M
    GENJYO, H
    SHIBATA, H
    NAKATA, H
    IEEE TRANSACTIONS ON COMPONENTS HYBRIDS AND MANUFACTURING TECHNOLOGY, 1984, 7 (04): : 411 - 416