A note on completeness and strongly clean rings

被引:2
|
作者
Diesl, Alexander J. [1 ]
Dorsey, Thomas J. [2 ]
Garg, Shelly [3 ]
Khurana, Dinesh [4 ]
机构
[1] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
[2] Ctr Commun Res, San Diego, CA 92121 USA
[3] Indian Inst Sci Educ & Res, Dept Math, Mohali 140306, India
[4] Panjab Univ, Dept Math, Chandigarh 160014, India
关键词
TRIANGULAR-MATRIX RINGS; LOCAL-RINGS;
D O I
10.1016/j.jpaa.2013.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many authors have investigated the behavior of strong cleanness under certain ring extensions. In this note, we investigate the classical problem of lifting idempotents, in order to consolidate and extend these results. Our main result is that if R is a ring which is complete with respect to an ideal I and if x is an element of R whose image in R/I is strongly pi-regular, then x is strongly clean in R. This generalizes Theorem 2.1 of Chen and Zhou (2007) [9]. (C) 2013 Published by Elsevier B.V.
引用
收藏
页码:661 / 665
页数:5
相关论文
共 50 条
  • [41] On strongly clean matrix and triangular matrix rings
    Chen, Jianlong
    Yang, Xiande
    Zhou, Yiqiang
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (10) : 3659 - 3674
  • [42] DEDEKIND-FINITE STRONGLY CLEAN RINGS
    Camillo, Victor
    Dorsey, Thomas J.
    Nielsen, Pace P.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) : 1619 - 1629
  • [43] Strongly J-Clean Rings with Involutions
    Chen, Huanyin
    Harmanci, Abdullah
    Ozcan, A. Cigdem
    RING THEORY AND ITS APPLICATIONS: RING THEORY SESSION IN HONOR OF T.Y. LAM ON HIS 70TH BIRTHDAY, 2014, 609 : 33 - +
  • [44] STRONGLY CLEAN TRIANGULAR MATRIX RINGS WITH ENDOMORPHISMS
    Chen, H.
    Kose, H.
    Kurtulmaz, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (06) : 1365 - 1374
  • [45] Strongly 2-nil-clean rings
    Chen, Huanyin
    Sheibani, Marjan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (09)
  • [46] STRONGLY NIL-CLEAN CORNER RINGS
    Danchev, P.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (05): : 1333 - 1339
  • [47] Strongly clean matrices over arbitrary rings
    Diesl, Alexander J.
    Dorsey, Thomas J.
    JOURNAL OF ALGEBRA, 2014, 399 : 854 - 869
  • [48] Strongly q-Nil-Clean Rings
    Abyzov, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (02) : 197 - 208
  • [49] Tripotents: a class of strongly clean elements in rings
    Calugareanu, Grigore
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (01): : 69 - 80
  • [50] Strongly q-Nil-Clean Rings
    A. N. Abyzov
    Siberian Mathematical Journal, 2019, 60 : 197 - 208