A note on completeness and strongly clean rings

被引:2
|
作者
Diesl, Alexander J. [1 ]
Dorsey, Thomas J. [2 ]
Garg, Shelly [3 ]
Khurana, Dinesh [4 ]
机构
[1] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
[2] Ctr Commun Res, San Diego, CA 92121 USA
[3] Indian Inst Sci Educ & Res, Dept Math, Mohali 140306, India
[4] Panjab Univ, Dept Math, Chandigarh 160014, India
关键词
TRIANGULAR-MATRIX RINGS; LOCAL-RINGS;
D O I
10.1016/j.jpaa.2013.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many authors have investigated the behavior of strong cleanness under certain ring extensions. In this note, we investigate the classical problem of lifting idempotents, in order to consolidate and extend these results. Our main result is that if R is a ring which is complete with respect to an ideal I and if x is an element of R whose image in R/I is strongly pi-regular, then x is strongly clean in R. This generalizes Theorem 2.1 of Chen and Zhou (2007) [9]. (C) 2013 Published by Elsevier B.V.
引用
下载
收藏
页码:661 / 665
页数:5
相关论文
共 50 条
  • [21] Uniquely Strongly Clean Group Rings
    Wang Xiu-lan (Department of Mathematics
    Communications in Mathematical Research, 2012, 28 (01) : 17 - 25
  • [22] A Generalization of Strongly Nil Clean Rings
    Cui, Jian
    Yin, Xiaobin
    ALGEBRA COLLOQUIUM, 2018, 25 (04) : 585 - 594
  • [23] Strongly clean power series rings
    Chen, Jianlong
    Zhou, Yiqiang
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2007, 50 : 73 - 85
  • [24] A class of uniquely (strongly) clean rings
    Gurgun, Orhan
    Ozcan, Ayse Cigdem
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (01) : 40 - 51
  • [25] On strongly Σ-m-clean rings
    Moutui, Moutu Abdou Salam
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 778 - 788
  • [26] SOME CLASSES OF STRONGLY CLEAN RINGS
    Chen, H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (06): : 1099 - 1115
  • [27] Strongly r-Clean Rings
    Sharma, Garima
    Singh, Amit B.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2018, 13 (02): : 207 - 214
  • [28] A note on weakly clean rings
    Angelina Y. M. Chin
    K. T. Qua
    Acta Mathematica Hungarica, 2011, 132 : 113 - 116
  • [29] A note on weakly clean rings
    Chin, A. Y. M.
    Qua, K. T.
    ACTA MATHEMATICA HUNGARICA, 2011, 132 (1-2) : 113 - 116
  • [30] A note on strongly π-regular rings
    A. Y. M. Chin
    Acta Mathematica Hungarica, 2004, 102 : 337 - 342