A note on completeness and strongly clean rings

被引:2
|
作者
Diesl, Alexander J. [1 ]
Dorsey, Thomas J. [2 ]
Garg, Shelly [3 ]
Khurana, Dinesh [4 ]
机构
[1] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
[2] Ctr Commun Res, San Diego, CA 92121 USA
[3] Indian Inst Sci Educ & Res, Dept Math, Mohali 140306, India
[4] Panjab Univ, Dept Math, Chandigarh 160014, India
关键词
TRIANGULAR-MATRIX RINGS; LOCAL-RINGS;
D O I
10.1016/j.jpaa.2013.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many authors have investigated the behavior of strong cleanness under certain ring extensions. In this note, we investigate the classical problem of lifting idempotents, in order to consolidate and extend these results. Our main result is that if R is a ring which is complete with respect to an ideal I and if x is an element of R whose image in R/I is strongly pi-regular, then x is strongly clean in R. This generalizes Theorem 2.1 of Chen and Zhou (2007) [9]. (C) 2013 Published by Elsevier B.V.
引用
收藏
页码:661 / 665
页数:5
相关论文
共 50 条
  • [31] A note on strongly π-regular rings
    Chin, AYM
    ACTA MATHEMATICA HUNGARICA, 2004, 102 (04) : 337 - 341
  • [32] NOTE ON STRONGLY REGULAR RINGS
    LUH, J
    PROCEEDINGS OF THE JAPAN ACADEMY, 1964, 40 (02): : 74 - &
  • [33] On m-clean and strongly m-clean rings
    Purkait, Sudipta
    Dutta, T. K.
    Kar, Sukhendu
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 218 - 227
  • [34] Nil-clean and strongly nil-clean rings
    Kosan, M. Tamer
    Wang, Zhou
    Zhou, Yiqiang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (02) : 633 - 646
  • [35] J-clean and Strongly J-clean Rings
    XIANG YUE-MING
    OUYANG LUN-QUN
    Communications in Mathematical Research, 2018, 34 (03) : 241 - 252
  • [36] z-clean and strongly z-clean rings
    Raofi, Maryam
    Talebi, Yahya
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 885 - 893
  • [37] STRONGLY CLEAN MATRIX RINGS OVER NONCOMMUTATIVE LOCAL RINGS
    Li Bingjun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (01) : 71 - 78
  • [38] Strongly clean triangular matrix rings over local rings
    Borooah, Gautam
    Diesl, Alexander J.
    Dorsey, Thomas J.
    JOURNAL OF ALGEBRA, 2007, 312 (02) : 773 - 797
  • [39] Strongly clean matrix rings over commutative local rings
    Borooah, Gautam
    Diesl, Alexander J.
    Dorsey, Thomas J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) : 281 - 296
  • [40] Strongly clean rings and fitting's lemma
    Nicholson, WK
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (08) : 3583 - 3592