Gromov Hyperbolicity of Regular Graphs

被引:0
|
作者
Carlos Hernandez-Gomez, J. [1 ]
Rodriguez, Jose M. [2 ]
Sigarreta, Jose M. [1 ]
Torres-Nunez, Yadira [3 ]
Villeta, Maria [4 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 5, Acapulco, Guerrero, Mexico
[2] Univ Carlos III Madrid, Dept Matemat, Av Univ 30, Madrid 28911, Spain
[3] Humboldt Int Univ, Dept Matemat, 4000 West Flagler St, Miami, FL 33134 USA
[4] Univ Complutense Madrid, Fac Estudios Estadist, Dept Estadist & Invest Operat 3, Av Puerta Hierro S-N, Madrid 3, Spain
关键词
Regular graphs; Gromov hyperbolicity; Geodesics; Domination numbers; Infinite graphs; SMALL-WORLD; CONSTANT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is a geodesic metric space and x(1), x(2), x(3) is an element of X, a geodesic triangle T = {x(1), x(2), x(3)} is the union of the three geodesics [x(1)x(2)], [x(2)x(3)] and [x(3)x(1)] in X. The space X is delta-hyperbolic (in the Gromov sense) if any side of T is contained in a delta-neighborhood of the union of the two other sides, for every geodesic triangle T in X. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. Regular graphs are a very interesting class of graphs with many applications. The main aim of this paper is to obtain information about the hyperbolicity constant of regular graphs. We obtain several bounds for this parameter; in particular, we prove that delta(G) <= Delta n/(8(Delta - 1))+1 for any Delta-regular graph G with n vertices. Furthermore, we show that for each Delta >= 2 and every possible value t of the hyperbolicity constant, there exists a Delta-regular graph G with delta(G) = t. We also study the regular graphs G with delta(G) <= 1, i.e., the graphs which are like trees (in the Gromov sense). Besides, we prove some inequalities involving the hyperbolicity constant and domination numbers for regular graphs.
引用
收藏
页码:395 / 416
页数:22
相关论文
共 50 条
  • [31] Bounds on Gromov hyperbolicity constant
    Hernandez, Veronica
    Pestana, Domingo
    Rodriguez, Jose M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 321 - 342
  • [32] Gromov hyperbolicity of Denjoy domains
    Alvarez, Venancio
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    GEOMETRIAE DEDICATA, 2006, 121 (01) : 221 - 245
  • [34] Bounds on Gromov hyperbolicity constant
    Verónica Hernández
    Domingo Pestana
    José M. Rodríguez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 321 - 342
  • [35] Gromov Hyperbolicity of Riemann Surfaces
    José M. Rodríguez
    Eva Tourís
    Acta Mathematica Sinica, English Series, 2007, 23 : 209 - 228
  • [36] Geometric characterizations of Gromov hyperbolicity
    Zoltán M. Balogh
    Stephen M. Buckley
    Inventiones mathematicae, 2003, 153 : 261 - 301
  • [37] Gromov hyperbolicity of Riemann surfaces
    Rodriguez, Jose M.
    Touris, Eva
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) : 209 - 228
  • [38] Topological stability and Gromov hyperbolicity
    Ruggiero, RO
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 143 - 154
  • [39] Effect of Gromov-Hyperbolicity Parameter on Cuts and Expansions in Graphs and Some Algorithmic Implications
    Bhaskar Das Gupta
    Marek Karpinski
    Nasim Mobasheri
    Farzane Yahyanejad
    Algorithmica, 2018, 80 : 772 - 800
  • [40] Effect of Gromov-Hyperbolicity Parameter on Cuts and Expansions in Graphs and Some Algorithmic Implications
    Das Gupta, Bhaskar
    Karpinski, Marek
    Mobasheri, Nasim
    Yahyanejad, Farzane
    ALGORITHMICA, 2018, 80 (02) : 772 - 800