Gromov Hyperbolicity of Regular Graphs

被引:0
|
作者
Carlos Hernandez-Gomez, J. [1 ]
Rodriguez, Jose M. [2 ]
Sigarreta, Jose M. [1 ]
Torres-Nunez, Yadira [3 ]
Villeta, Maria [4 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 5, Acapulco, Guerrero, Mexico
[2] Univ Carlos III Madrid, Dept Matemat, Av Univ 30, Madrid 28911, Spain
[3] Humboldt Int Univ, Dept Matemat, 4000 West Flagler St, Miami, FL 33134 USA
[4] Univ Complutense Madrid, Fac Estudios Estadist, Dept Estadist & Invest Operat 3, Av Puerta Hierro S-N, Madrid 3, Spain
关键词
Regular graphs; Gromov hyperbolicity; Geodesics; Domination numbers; Infinite graphs; SMALL-WORLD; CONSTANT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is a geodesic metric space and x(1), x(2), x(3) is an element of X, a geodesic triangle T = {x(1), x(2), x(3)} is the union of the three geodesics [x(1)x(2)], [x(2)x(3)] and [x(3)x(1)] in X. The space X is delta-hyperbolic (in the Gromov sense) if any side of T is contained in a delta-neighborhood of the union of the two other sides, for every geodesic triangle T in X. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. Regular graphs are a very interesting class of graphs with many applications. The main aim of this paper is to obtain information about the hyperbolicity constant of regular graphs. We obtain several bounds for this parameter; in particular, we prove that delta(G) <= Delta n/(8(Delta - 1))+1 for any Delta-regular graph G with n vertices. Furthermore, we show that for each Delta >= 2 and every possible value t of the hyperbolicity constant, there exists a Delta-regular graph G with delta(G) = t. We also study the regular graphs G with delta(G) <= 1, i.e., the graphs which are like trees (in the Gromov sense). Besides, we prove some inequalities involving the hyperbolicity constant and domination numbers for regular graphs.
引用
收藏
页码:395 / 416
页数:22
相关论文
共 50 条
  • [21] Gromov hyperbolicity of periodic planar graphs
    Canton, Alicia
    Granados, Ana
    Pestana, Domingo
    Manuel Rodriguez, Jose
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (01) : 79 - 90
  • [22] Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces
    Touris, Eva
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 865 - 881
  • [23] Pseudoconvexity and Gromov hyperbolicity
    Balogh, ZM
    Bonk, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (07): : 597 - 602
  • [24] Geometric characterizations of Gromov hyperbolicity
    Balogh, ZM
    Buckley, SM
    INVENTIONES MATHEMATICAE, 2003, 153 (02) : 261 - 301
  • [25] GROMOV HYPERBOLICITY AND QUASIHYPERBOLIC GEODESICS
    Koskela, Pekka
    Lammi, Paivi
    Manojlovic, Vesna
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2014, 47 (05): : 975 - 990
  • [26] Gromov hyperbolicity of the Hilbert distance
    Fathi Haggui
    Houcine Guermazi
    Annals of Global Analysis and Geometry, 2022, 61 : 235 - 251
  • [27] Gromov hyperbolicity of Denjoy Domains
    Venancio Alvarez
    Ana Portilla
    Jose M. Rodriguez
    Eva Touris
    Geometriae Dedicata, 2006, 121 : 221 - 245
  • [28] Gromov hyperbolicity of the Hilbert distance
    Haggui, Fathi
    Guermazi, Houcine
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (02) : 235 - 251
  • [29] Gromov Hyperbolicity of Riemann Surfaces
    José M.RODRíGUEZ
    EVa TOURIS
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (02) : 209 - 228
  • [30] UNIFORMITY FROM GROMOV HYPERBOLICITY
    Herron, David
    Shanmugalingam, Nageswari
    Xie, Xiangdong
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (04) : 1065 - 1109