The algebra of reversible Markov chains

被引:4
|
作者
Pistone, Giovanni [1 ]
Rogantin, Maria Piera [2 ]
机构
[1] Coll Carlo Alberto, I-10024 Moncalieri, Italy
[2] Univ Genoa, DIMA, I-16146 Genoa, Italy
关键词
Reversible Markov chain; Algebraic statistics; Toric ideal;
D O I
10.1007/s10463-012-0368-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a Markov chain, both the detailed balance condition and the cycle Kolmogorov condition are algebraic binomials. This remark suggests to study reversible Markov chains with the tool of Algebraic Statistics, such as toric statistical models. One of the results of this study is an algebraic parameterization of reversible Markov transitions and their invariant probability.
引用
收藏
页码:269 / 293
页数:25
相关论文
共 50 条
  • [21] Information Geometry of Reversible Markov Chains
    Wolfer G.
    Watanabe S.
    Information Geometry, 2021, 4 (2) : 393 - 433
  • [22] ON THE INVARIANCE PRINCIPLE FOR REVERSIBLE MARKOV CHAINS
    Peligrad, Magda
    Utev, Sergey
    JOURNAL OF APPLIED PROBABILITY, 2016, 53 (02) : 593 - 599
  • [23] The smallest eigenvalue for reversible Markov chains
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 383 : 175 - 186
  • [24] On kernel estimators of density for reversible Markov chains
    Longla, Martial
    Peligrad, Magda
    Sang, Hailin
    STATISTICS & PROBABILITY LETTERS, 2015, 100 : 149 - 157
  • [25] BAYESIAN NONPARAMETRIC ANALYSIS OF REVERSIBLE MARKOV CHAINS
    Bacallado, Sergio
    Favaro, Stefano
    Trippa, Lorenzo
    ANNALS OF STATISTICS, 2013, 41 (02): : 870 - 896
  • [26] Lower and upper bounds for reversible Markov chains
    Delmotte, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09): : 1053 - 1058
  • [27] SPECTRAL THEORY FOR WEAKLY REVERSIBLE MARKOV CHAINS
    Wuebker, Achim
    JOURNAL OF APPLIED PROBABILITY, 2012, 49 (01) : 245 - 265
  • [28] Upgrading MLSI to LSI for reversible Markov chains
    Salez, Justin
    Tikhomirov, Konstantin
    Youssef, Pierre
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (09)
  • [29] Interlacing eigenvalues in time reversible Markov chains
    Brown, M
    MATHEMATICS OF OPERATIONS RESEARCH, 1999, 24 (04) : 847 - 864
  • [30] On Reversible Markov Chains and Maximization of Directed Information
    Gorantla, Siva K.
    Coleman, Todd P.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 216 - 220