The algebra of reversible Markov chains

被引:4
|
作者
Pistone, Giovanni [1 ]
Rogantin, Maria Piera [2 ]
机构
[1] Coll Carlo Alberto, I-10024 Moncalieri, Italy
[2] Univ Genoa, DIMA, I-16146 Genoa, Italy
关键词
Reversible Markov chain; Algebraic statistics; Toric ideal;
D O I
10.1007/s10463-012-0368-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a Markov chain, both the detailed balance condition and the cycle Kolmogorov condition are algebraic binomials. This remark suggests to study reversible Markov chains with the tool of Algebraic Statistics, such as toric statistical models. One of the results of this study is an algebraic parameterization of reversible Markov transitions and their invariant probability.
引用
收藏
页码:269 / 293
页数:25
相关论文
共 50 条
  • [31] APPROXIMATIONS OF GEOMETRICALLY ERGODIC REVERSIBLE MARKOV CHAINS
    Negrea, Jeffrey
    Rosenthal, Jeffrey S.
    ADVANCES IN APPLIED PROBABILITY, 2021, 53 (04) : 981 - 1022
  • [32] SOME INEQUALITIES FOR REVERSIBLE MARKOV-CHAINS
    ALDOUS, DJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 25 (JUN): : 564 - 576
  • [33] TRANSITION PROBABILITY ESTIMATES FOR REVERSIBLE MARKOV CHAINS
    Telcs, Andras
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 : 29 - 37
  • [34] Comparing limit profiles of reversible Markov chains
    Nestoridi, Evita
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [35] Transient calculations on process algebra derived Markov chains
    Clark, A.
    Gilmore, S.
    IET SOFTWARE, 2009, 3 (06) : 495 - 508
  • [36] Average mixing in quantum walks of reversible Markov chains
    Sorci, Julien
    DISCRETE MATHEMATICS, 2025, 348 (01)
  • [37] Metastability and Low Lying Spectra¶in Reversible Markov Chains
    Anton Bovier
    Michael Eckhoff
    Véronique Gayrard
    Markus Klein
    Communications in Mathematical Physics, 2002, 228 : 219 - 255
  • [38] Metastability and low lying spectra in reversible Markov chains
    Bovier, A
    Eckhoff, M
    Gayrard, V
    Klein, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (02) : 219 - 255
  • [39] Optimal Hoeffding bounds for discrete reversible Markov chains
    León, CA
    Perron, F
    ANNALS OF APPLIED PROBABILITY, 2004, 14 (02): : 958 - 970
  • [40] Geodesic convexity of the relative entropy in reversible Markov chains
    Alexander Mielke
    Calculus of Variations and Partial Differential Equations, 2013, 48 : 1 - 31