Few-Shot Action Recognition with Hierarchical Matching and Contrastive Learning

被引:15
|
作者
Zheng, Sipeng [1 ]
Chen, Shizhe [2 ]
Jin, Qin [1 ]
机构
[1] Renmin Univ China, Beijing, Peoples R China
[2] INRIA, Paris, France
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Few-shot learning; Action recognition; Contrastive learning;
D O I
10.1007/978-3-031-19772-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot action recognition aims to recognize actions in test videos based on limited annotated data of target action classes. The dominant approaches project videos into a metric space and classify videos via nearest neighboring. They mainly measure video similarities using global or temporal alignment alone, while an optimum matching should be multi-level. However, the complexity of learning coarse-to-fine matching quickly rises as we focus on finer-grained visual cues, and the lack of detailed local supervision is another challenge. In this work, we propose a hierarchical matching model to support comprehensive similarity measure at global, temporal and spatial levels via a zoom-in matching module. We further propose a mixed-supervised hierarchical contrastive learning (HCL), which not only employs supervised contrastive learning to differentiate videos at different levels, but also utilizes cycle consistency as weak supervision to align discriminative temporal clips or spatial patches. Our model achieves state-of-the-art performance on four benchmarks especially under the most challenging 1-shot recognition setting.
引用
收藏
页码:297 / 313
页数:17
相关论文
共 50 条
  • [41] CLG: Contrastive Label Generation with Knowledge for Few-Shot Learning
    Ma, Han
    Fan, Baoyu
    Ng, Benjamin K.
    Lam, Chan-Tong
    MATHEMATICS, 2024, 12 (03)
  • [42] ContrastNet: A Contrastive Learning Framework for Few-Shot Text Classification
    Chen, Junfan
    Zhang, Richong
    Mao, Yongyi
    Xu, Jie
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10492 - 10500
  • [43] Multi-granularity episodic contrastive learning for few-shot learning
    Zhu, Pengfei
    Zhu, Zhilin
    Wang, Yu
    Zhang, Jinglin
    Zhao, Shuai
    PATTERN RECOGNITION, 2022, 131
  • [44] Multimodal Few-Shot Learning for Gait Recognition
    Moon, Jucheol
    Nhat Anh Le
    Minaya, Nelson Hebert
    Choi, Sang-Il
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 15
  • [45] Unsupervised contrastive learning for few-shot TOC prediction and application
    Wang, Huijun
    Lu, Shuangfang
    Qiao, Lu
    Chen, Fangwen
    He, Xipeng
    Gao, Yuqiao
    Mei, Junwei
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2022, 259
  • [46] Boosting Few-Shot Classification with Lie Group Contrastive Learning
    He, Feihong
    Li, Fanzhang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT I, 2023, 14254 : 99 - 111
  • [47] Supervised Graph Contrastive Learning for Few-Shot Node Classification
    Tan, Zhen
    Ding, Kaize
    Guo, Ruocheng
    Liu, Huan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 394 - 411
  • [48] Iris recognition based on few-shot learning
    Lei, Songze
    Dong, Baihua
    Li, Yonggang
    Xiao, Feng
    Tian, Feng
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2021, 32 (3-4)
  • [49] Contrastive Meta-Learning for Few-shot Node Classification
    Wang, Song
    Tan, Zhen
    Liu, Huan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2386 - 2397
  • [50] Few-Shot Learning for Misinformation Detection Based on Contrastive Models
    Zheng, Peng
    Chen, Hao
    Hu, Shu
    Zhu, Bin
    Hu, Jinrong
    Lin, Ching-Sheng
    Wu, Xi
    Lyu, Siwei
    Huang, Guo
    Wang, Xin
    ELECTRONICS, 2024, 13 (04)