Few-Shot Action Recognition with Hierarchical Matching and Contrastive Learning

被引:15
|
作者
Zheng, Sipeng [1 ]
Chen, Shizhe [2 ]
Jin, Qin [1 ]
机构
[1] Renmin Univ China, Beijing, Peoples R China
[2] INRIA, Paris, France
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Few-shot learning; Action recognition; Contrastive learning;
D O I
10.1007/978-3-031-19772-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot action recognition aims to recognize actions in test videos based on limited annotated data of target action classes. The dominant approaches project videos into a metric space and classify videos via nearest neighboring. They mainly measure video similarities using global or temporal alignment alone, while an optimum matching should be multi-level. However, the complexity of learning coarse-to-fine matching quickly rises as we focus on finer-grained visual cues, and the lack of detailed local supervision is another challenge. In this work, we propose a hierarchical matching model to support comprehensive similarity measure at global, temporal and spatial levels via a zoom-in matching module. We further propose a mixed-supervised hierarchical contrastive learning (HCL), which not only employs supervised contrastive learning to differentiate videos at different levels, but also utilizes cycle consistency as weak supervision to align discriminative temporal clips or spatial patches. Our model achieves state-of-the-art performance on four benchmarks especially under the most challenging 1-shot recognition setting.
引用
收藏
页码:297 / 313
页数:17
相关论文
共 50 条
  • [21] CONTRASTIVE REPRESENTATION FOR FEW-SHOT VEHICLE FOOTPRINT RECOGNITION
    Wang, Yongxiong
    Hu, Chuanfei
    Wang, Guangpeng
    Lin, Xu
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [22] FedFSLAR: A Federated Learning Framework for Few-shot Action Recognition
    Nguyen Anh Tu
    Abu, Assanali
    Aikyn, Nartay
    Makhanov, Nursultan
    Lee, Min-Ho
    Khiem Le-Huy
    Wong, Kok-Seng
    2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 270 - 279
  • [23] Few-shot learning for ear recognition
    Zhang, Jie
    Yu, Wen
    Yang, Xudong
    Deng, Fang
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019), 2019, : 50 - 54
  • [24] Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and Contrastive Meta-Learning
    Wang, Jiahao
    Wang, Yunhong
    Liu, Sheng
    Li, Annan
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 582 - 591
  • [25] Multimodal variational contrastive learning for few-shot classification
    Pan, Meihong
    Shen, Hongbin
    APPLIED INTELLIGENCE, 2024, 54 (02) : 1879 - 1892
  • [26] Few-shot image generation with reverse contrastive learning
    Gou, Yao
    Li, Min
    Zhang, Yusen
    He, Zhuzhen
    He, Yujie
    NEURAL NETWORKS, 2024, 169 : 154 - 164
  • [27] Multimodal variational contrastive learning for few-shot classification
    Meihong Pan
    Hongbin Shen
    Applied Intelligence, 2024, 54 : 1879 - 1892
  • [28] Boosting Few-shot Action Recognition with Graph-guided Hybrid Matching
    Xing, Jiazheng
    Wang, Mengmeng
    Ruan, Yudi
    Chen, Bofan
    Guo, Yaowei
    Mu, Boyu
    Dai, Guang
    Wang, Jingdong
    Liu, Yong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1740 - 1750
  • [29] Few-shot Object Detection with Refined Contrastive Learning
    Shangguan, Zeyu
    Huai, Lian
    Liu, Tong
    Jiang, Xingqun
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 991 - 996
  • [30] Graph Few-shot Learning with Attribute Matching
    Wang, Ning
    Luo, Minnan
    Ding, Kaize
    Zhang, Lingling
    Li, Jundong
    Zheng, Qinghua
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1545 - 1554