Quantized thermal transport in single-atom junctions

被引:178
|
作者
Cui, Longji [1 ]
Jeong, Wonho [1 ]
Hur, Sunghoon [1 ]
Matt, Manuel [2 ]
Klockner, Jan C. [2 ]
Pauly, Fabian [2 ]
Nielaba, Peter [2 ]
Carlos Cuevas, Juan [3 ,4 ]
Meyhofer, Edgar [1 ]
Reddy, Pramod [5 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[3] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
[4] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
[5] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
SIZED POINT-CONTACT; MOLECULAR JUNCTIONS; HEAT-FLOW; METALLIC CONTACTS; ROOM-TEMPERATURE; SHOT-NOISE; QUANTUM; CONDUCTANCE; THERMOPOWER; THERMOELECTRICITY;
D O I
10.1126/science.aam6622
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal transport in individual atomic junctions and chains is of great fundamental interest because of the distinctive quantum effects expected to arise in them. By using novel, custom-fabricated, picowatt-resolution calorimetric scanning probes, we measured the thermal conductance of gold and platinum metallic wires down to single-atom junctions. Our work reveals that the thermal conductance of gold single-atom junctions is quantized at room temperature and shows that the Wiedemann-Franz law relating thermal and electrical conductance is satisfied even in single-atom contacts. Furthermore, we quantitatively explain our experimental results within the Landauer framework for quantum thermal transport. The experimental techniques reported here will enable thermal transport studies in atomic and molecular chains, which will be key to investigating numerous fundamental issues that thus far have remained experimentally inaccessible.
引用
收藏
页码:1192 / 1195
页数:4
相关论文
共 50 条
  • [21] Single-Atom Catalysts
    Gawande, Manoj B.
    Ariga, Katsuhiko
    Yamauchi, Yusuke
    SMALL, 2021, 17 (16)
  • [22] Single-Atom Electrocatalysts
    Zhu, Chengzhou
    Fu, Shaofang
    Shi, Qiurong
    Du, Dan
    Lin, Yuehe
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (45) : 13944 - 13960
  • [23] Single-atom efficiency
    Groves, Alexandra R.
    NATURE SYNTHESIS, 2022, 1 (09): : 670 - 670
  • [24] A single-atom transistor
    Fuechsle, Martin
    Miwa, Jill A.
    Mahapatra, Suddhasatta
    Ryu, Hoon
    Lee, Sunhee
    Warschkow, Oliver
    Hollenberg, Lloyd C. L.
    Klimeck, Gerhard
    Simmons, Michelle Y.
    NATURE NANOTECHNOLOGY, 2012, 7 (04) : 242 - 246
  • [25] Single-atom nanozymes
    Huang, Liang
    Chen, Jinxing
    Gan, Linfeng
    Wang, Jin
    Dong, Shaojun
    SCIENCE ADVANCES, 2019, 5 (05)
  • [26] Single-Atom Suture
    Wang, Chenyang
    Li, Xiang
    Ni, Erli
    Yang, Wenxuan
    Zeng, Ziyue
    Liu, Haiyang
    Cheng, Tingting
    Yu, Ting
    Zeng, Mengqi
    Fu, Lei
    ACS NANO, 2025, 19 (02) : 2468 - 2474
  • [27] SINGLE-ATOM TRANSISTOR
    Borman, Stu
    CHEMICAL & ENGINEERING NEWS, 2012, 90 (09) : 8 - 8
  • [28] The single-atom laser
    Feld, MS
    An, KW
    SCIENTIFIC AMERICAN, 1998, 279 (01) : 56 - +
  • [29] Single-Atom Catalysts
    Gawande, Manoj B.
    Ariga, Katsuhiko
    Yamauchi, Yusuke
    ADVANCED MATERIALS INTERFACES, 2021, 8 (08):
  • [30] Single-atom efficiency
    Alexandra R. Groves
    Nature Synthesis, 2022, 1 : 670 - 670