A single-atom transistor

被引:0
|
作者
Fuechsle, Martin [1 ]
Miwa, Jill A. [1 ]
Mahapatra, Suddhasatta [1 ]
Ryu, Hoon [2 ]
Lee, Sunhee [3 ]
Warschkow, Oliver [4 ]
Hollenberg, Lloyd C. L. [5 ]
Klimeck, Gerhard [3 ]
Simmons, Michelle Y. [1 ]
机构
[1] Univ New S Wales, Sch Phys, Ctr Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
[2] Korea Inst Sci & Technol Informat, Supercomp Ctr, Taejon 305806, South Korea
[3] Purdue Univ, Birck Nanotechnol Ctr, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
[4] Univ Sydney, Sch Phys, Ctr Quantum Computat & Commun Technol, Sydney, NSW 2006, Australia
[5] Univ Melbourne, Sch Phys, Ctr Quantum Computat & Commun Technol, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
SCANNING TUNNELING MICROSCOPE; SILICON; SEMICONDUCTORS; SPECTROSCOPY; DOPANTS; DONORS; LIMITS; SPIN;
D O I
10.1038/NNANO.2012.21
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The ability to control matter at the atomic scale and build devices with atomic precision is central to nanotechnology. The scanning tunnelling microscope(1) can manipulate individual atoms(2) and molecules on surfaces, but the manipulation of silicon to make atomic-scale logic circuits has been hampered by the covalent nature of its bonds. Resist-based strategies have allowed the formation of atomic-scale structures on silicon surfaces(3), but the fabrication of working devices-such as transistors with extremely short gate lengths(4), spin-based quantum computers(5-8) and solitary dopant optoelectronic devices(9)-requires the ability to position individual atoms in a silicon crystal with atomic precision. Here, we use a combination of scanning tunnelling microscopy and hydrogen-resist lithography to demonstrate a single-atom transistor in which an individual phosphorus dopant atom has been deterministically placed within an epitaxial silicon device architecture with a spatial accuracy of one lattice site. The transistor operates at liquid helium temperatures, and millikelvin electron transport measurements confirm the presence of discrete quantum levels in the energy spectrum of the phosphorus atom. We find a charging energy that is close to the bulk value, previously only observed by optical spectroscopy(10).
引用
收藏
页码:242 / 246
页数:5
相关论文
共 50 条
  • [1] The single-atom transistor
    Xie, FQ
    Obermair, C
    Schimmel, T
    [J]. Nanofair 2005: New Ideas for Industry, 2005, 1920 : 15 - 15
  • [2] A single-atom transistor
    Martin Fuechsle
    Jill A. Miwa
    Suddhasatta Mahapatra
    Hoon Ryu
    Sunhee Lee
    Oliver Warschkow
    Lloyd C. L. Hollenberg
    Gerhard Klimeck
    Michelle Y. Simmons
    [J]. Nature Nanotechnology, 2012, 7 (4) : 242 - 246
  • [3] SINGLE-ATOM TRANSISTOR
    Borman, Stu
    [J]. CHEMICAL & ENGINEERING NEWS, 2012, 90 (09) : 8 - 8
  • [4] Single-atom transistor for light
    Scott Parkins
    [J]. Nature, 2010, 465 : 699 - 700
  • [5] The Kondo effect and the single-atom transistor
    Chandrasekhar, N
    [J]. CURRENT SCIENCE, 2002, 83 (03): : 204 - 207
  • [6] QUANTUM OPTICS Single-atom transistor for light
    Parkins, Scott
    [J]. NATURE, 2010, 465 (7299) : 699 - 700
  • [7] Single-Atom Transistor as a Precise Magnetic Field Sensor
    Jachymski, Krzysztof
    Wasak, Tomasz
    Idziaszek, Zbigniew
    Julienne, Paul S.
    Negretti, Antonio
    Calarco, Tommaso
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (01)
  • [8] The Single-Atom Transistor: Quantum Electronics at Room Temperature
    Obermair, Christian
    Xie, Fangqing
    Schimmel, Thomas
    Schimmel, Thomas
    [J]. 2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 439 - 441
  • [9] Multiplicity of atomic reconfigurations in an electrochemical Pb single-atom transistor
    Xie, F. -Q.
    Lin, X. -H.
    Gross, A.
    Evers, F.
    Pauly, F.
    Schimmel, Th.
    [J]. PHYSICAL REVIEW B, 2017, 95 (19)
  • [10] Simulation of single-electron transistor based on the molecule with single-atom charge center
    Parshintsev, A. A.
    Shorokhov, V. V.
    Soldatov, E. S.
    [J]. INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2018, 2019, 11022