Quantized thermal transport in single-atom junctions

被引:178
|
作者
Cui, Longji [1 ]
Jeong, Wonho [1 ]
Hur, Sunghoon [1 ]
Matt, Manuel [2 ]
Klockner, Jan C. [2 ]
Pauly, Fabian [2 ]
Nielaba, Peter [2 ]
Carlos Cuevas, Juan [3 ,4 ]
Meyhofer, Edgar [1 ]
Reddy, Pramod [5 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[3] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
[4] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
[5] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
SIZED POINT-CONTACT; MOLECULAR JUNCTIONS; HEAT-FLOW; METALLIC CONTACTS; ROOM-TEMPERATURE; SHOT-NOISE; QUANTUM; CONDUCTANCE; THERMOPOWER; THERMOELECTRICITY;
D O I
10.1126/science.aam6622
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal transport in individual atomic junctions and chains is of great fundamental interest because of the distinctive quantum effects expected to arise in them. By using novel, custom-fabricated, picowatt-resolution calorimetric scanning probes, we measured the thermal conductance of gold and platinum metallic wires down to single-atom junctions. Our work reveals that the thermal conductance of gold single-atom junctions is quantized at room temperature and shows that the Wiedemann-Franz law relating thermal and electrical conductance is satisfied even in single-atom contacts. Furthermore, we quantitatively explain our experimental results within the Landauer framework for quantum thermal transport. The experimental techniques reported here will enable thermal transport studies in atomic and molecular chains, which will be key to investigating numerous fundamental issues that thus far have remained experimentally inaccessible.
引用
收藏
页码:1192 / 1195
页数:4
相关论文
共 50 条
  • [31] The Influence of Thermal Excitations of Reservoir on Single-Atom Phase Bistability
    Karlovich, T. B.
    WOMEN IN PHYSICS, 2013, 1517 : 206 - 206
  • [32] Single-Atom Switches and Single-Atom Gaps Using Stretched Metal Nanowires
    Wang, Qingling
    Liu, Ran
    Xiang, Dong
    Sun, Mingyu
    Zhao, Zhikai
    Sun, Lu
    Mei, Tingting
    Wu, Pengfei
    Liu, Haitao
    Guo, Xuefeng
    Li, Zong-Liang
    Lee, Takhee
    ACS NANO, 2016, 10 (10) : 9695 - 9702
  • [33] Atomic Configuration and Conductance of Tantalum Single-Atom Contacts and Single-Atom Wires
    Kizuka, Tokushi
    Murata, Satoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (09)
  • [34] Thermal properties of single-atom alcohols (isobaric heat capacity)
    Naziev, Ya.M.
    Shakhverdiev, A.N.
    Bashirov, M.M.
    Aliev, N.S.
    Teplofizika Vysokikh Temperatur, 1994, 32 (06): : 925 - 948
  • [35] Single-atom trapping and transport in DMD-controlled optical tweezers
    Stuart, Dustin
    Kuhn, Axel
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [36] Shot-noise measurements of single-atom junctions using a scanning tunneling microscope
    Tamir, Idan
    Caspari, Verena
    Rolf, Daniela
    Lotze, Christian
    Franke, Katharina J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (02):
  • [37] Single-Atom Alloy Catalysis
    Hannagan, Ryan T.
    Giannakakis, Georgios
    Flytzani-Stephanopoulos, Maria
    Sykes, E. Charles H.
    CHEMICAL REVIEWS, 2020, 120 (21) : 12044 - 12088
  • [38] An Overview of Metal Density Effects in Single-Atom Catalysts for Thermal Catalysis
    Jin, Hongqiang
    Song, Weiguo
    Cao, Changyan
    ACS CATALYSIS, 2023, 13 (22) : 15126 - 15142
  • [39] Single-atom alloys prepared by two-step thermal evaporation
    Wang, Honglin
    Li, Jing
    Huang, Meirong
    Cui, Jizhe
    Cheng, Zhiying
    Yu, Rong
    Zhu, Hongwei
    NANO RESEARCH, 2024, 17 (04) : 2808 - 2813
  • [40] Single-atom conductance of Y
    Parveen, Nadia
    Ishino, Yuji
    Kurokawa, Shu
    Sakai, Akira
    PHYSICA B-CONDENSED MATTER, 2016, 488 : 57 - 61