Efficient Active Learning Strategies for Monocular 3D Object Detection

被引:4
|
作者
Hekimoglu, Aral [1 ,2 ]
Schmidt, Michael [2 ]
Marcos-Ramiro, Alvaro [2 ]
Rigoll, Gerhard [1 ]
机构
[1] Tech Univ Munich, Chair Human Machine Commun, Munich, Germany
[2] BMW Grp, Munich, Germany
关键词
D O I
10.1109/IV51971.2022.9827454
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Processing camera information to perceive their 3D surrounding is essential for building scalable autonomous driving vehicles. For this task, deep learning networks provide effective real-time solutions. However, to compensate for missing depth information in cameras compared to LiDARs, a large amount of labeled data is required for training. Active learning is a training framework where the network actively participates in the data selection process to improve data efficiency and performance. In this work, we propose an active learning pipeline for 3D object detection from monocular images. The main components of our approach are (1) two training-efficient uncertainty estimation strategies, (2) a diversity-based selection strategy to select images that contain the most diverse set of objects, (3) a novel active learning strategy more suitable for training autonomous driving perception networks. Experiments show that combining our proposed uncertainty estimation methods provides a better data saving rate and reaches a higher final performance than baselines. Furthermore, we empirically show performance gains of the presented diversity-based selection strategy and the efficiency of the proposed active learning strategy.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 50 条
  • [41] SGM3D: Stereo Guided Monocular 3D Object Detection
    Zhou, Zheyuan
    Du, Liang
    Ye, Xiaoqing
    Zou, Zhikang
    Tan, Xiao
    Zhang, Li
    Xue, Xiangyang
    Feng, Jianfeng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 10478 - 10485
  • [42] RoadSense3D: A Framework for Roadside Monocular 3D Object Detection
    Carta, Salvatore
    Castrillon-Santana, Modesto
    Marras, Mirko
    Mohamed, Sondos
    Podda, Alessandro Sebastian
    Saia, Roberto
    Sau, Marco
    Zimmer, Walter
    ADJUNCT PROCEEDINGS OF THE 32ND ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2024, 2024, : 452 - 459
  • [43] MonoSample: Synthetic 3D Data Augmentation Method in Monocular 3D Object Detection
    Qiao, Junchao
    Liu, Biao
    Yang, Jiaqi
    Wang, Baohua
    Xiu, Sanmu
    Du, Xin
    Nie, Xiaobo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (08): : 7326 - 7332
  • [44] Monocular 3D Object Detection: An Extrinsic Parameter Free Approach
    Zhou, Yunsong
    He, Yuan
    Zhu, Hongzi
    Wang, Cheng
    Li, Hongyang
    Jiang, Qinhong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7552 - 7562
  • [45] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation
    Chen, Hansheng
    Huang, Yuyao
    Tian, Wei
    Gao, Zhong
    Xiong, Lu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10374 - 10383
  • [46] Monocular 3D Object Detection Based on Uncertainty Prediction of Keypoints
    Chen, Mu
    Zhao, Huaici
    Liu, Pengfei
    MACHINES, 2022, 10 (01)
  • [47] 3D Object Detection and Tracking Using Monocular Camera in CARLA
    Zhang, Yanyu
    Song, Jiahao
    Li, Shuwei
    2021 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2021, : 67 - 72
  • [48] MonoDCN: Monocular 3D object detection based on dynamic convolution
    Qu, Shenming
    Yang, Xinyu
    Gao, Yiming
    Liang, Shengbin
    PLOS ONE, 2022, 17 (10):
  • [49] MonoPGC: Monocular 3D Object Detection with Pixel Geometry Contexts
    Wu, Zizhang
    Gan, Yuanzhu
    Wang, Lei
    Chen, Guilian
    Pu, Jian
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4842 - 4849
  • [50] Deep Optics for Monocular Depth Estimation and 3D Object Detection
    Chang, Julie
    Wetzstein, Gordon
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10192 - 10201