Efficient Active Learning Strategies for Monocular 3D Object Detection

被引:4
|
作者
Hekimoglu, Aral [1 ,2 ]
Schmidt, Michael [2 ]
Marcos-Ramiro, Alvaro [2 ]
Rigoll, Gerhard [1 ]
机构
[1] Tech Univ Munich, Chair Human Machine Commun, Munich, Germany
[2] BMW Grp, Munich, Germany
关键词
D O I
10.1109/IV51971.2022.9827454
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Processing camera information to perceive their 3D surrounding is essential for building scalable autonomous driving vehicles. For this task, deep learning networks provide effective real-time solutions. However, to compensate for missing depth information in cameras compared to LiDARs, a large amount of labeled data is required for training. Active learning is a training framework where the network actively participates in the data selection process to improve data efficiency and performance. In this work, we propose an active learning pipeline for 3D object detection from monocular images. The main components of our approach are (1) two training-efficient uncertainty estimation strategies, (2) a diversity-based selection strategy to select images that contain the most diverse set of objects, (3) a novel active learning strategy more suitable for training autonomous driving perception networks. Experiments show that combining our proposed uncertainty estimation methods provides a better data saving rate and reaches a higher final performance than baselines. Furthermore, we empirically show performance gains of the presented diversity-based selection strategy and the efficiency of the proposed active learning strategy.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 50 条
  • [31] Monocular 3D Object Detection with Depth from Motion
    Wang, Tai
    Pang, Jiangmiao
    Lin, Dahua
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 386 - 403
  • [32] Monocular 3D object detection for construction scene analysis
    Shen, Jie
    Jiao, Lang
    Zhang, Cong
    Peng, Keran
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (09) : 1370 - 1389
  • [33] Delving into Localization Errors for Monocular 3D Object Detection
    Ma, Xinzhu
    Zhang, Yinmin
    Xu, Dan
    Zhou, Dongzhan
    Yi, Shuai
    Li, Haojie
    Ouyang, Wanli
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4719 - 4728
  • [34] Shape-Aware Monocular 3D Object Detection
    Chen, Wei
    Zhao, Jie
    Zhao, Wan-Lei
    Wu, Song-Yuan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 6416 - 6424
  • [35] Competition for roadside camera monocular 3D object detection
    Jinrang Jia
    Yifeng Shi
    Yuli Qu
    Rui Wang
    Xing Xu
    Hai Zhang
    NationalScienceReview, 2023, 10 (06) : 34 - 37
  • [36] MonoGRNet: A General Framework for Monocular 3D Object Detection
    Qin, Zengyi
    Wang, Jinglu
    Lu, Yan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5170 - 5184
  • [37] Object-Aware Centroid Voting for Monocular 3D Object Detection
    Bao, Wentao
    Yu, Qi
    Kong, Yu
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 2197 - 2204
  • [38] Deep Learning-Based Monocular 3D Object Detection with Refinement of Depth Information
    Hu, Henan
    Zhu, Ming
    Li, Muyu
    Chan, Kwok-Leung
    SENSORS, 2022, 22 (07)
  • [39] Selective Transfer Learning of Cross-Modality Distillation for Monocular 3D Object Detection
    Ding, Rui
    Yang, Meng
    Zheng, Nanning
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9925 - 9938
  • [40] Deep Active Learning for Efficient Training of a LiDAR 3D Object Detector
    Feng, Di
    Wei, Xiao
    Rosenbaum, Lars
    Maki, Atsuto
    Dietmayer, Klaus
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 667 - 674