MonoDCN: Monocular 3D object detection based on dynamic convolution

被引:2
|
作者
Qu, Shenming [1 ]
Yang, Xinyu [1 ]
Gao, Yiming [1 ]
Liang, Shengbin [1 ]
机构
[1] Henan Univ, Sch Software, Kaifeng, Henan, Peoples R China
来源
PLOS ONE | 2022年 / 17卷 / 10期
关键词
D O I
10.1371/journal.pone.0275438
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
3D object detection is vital in the environment perception of autonomous driving. The current monocular 3D object detection technology mainly uses RGB images and pseudo radar point clouds as input. The methods of taking RGB images as input need to learn with geometric constraints and ignore the depth information in the picture, leading to the method being too complicated and inefficient. Although some image-based methods use depth map information for post-calibration and correction, such methods usually require a high-precision depth estimation network. The methods of using the pseudo radar point cloud as input easily introduce noise in the conversion process of depth information to the pseudo radar point cloud, which cause a large deviation in the detection process and ignores semantic information simultaneously. We introduce dynamic convolution guided by the depth map into the feature extraction network, the convolution kernel of dynamic convolution automatically learns from the depth map of the image. It solves the problem that depth information and semantic information cannot be used simultaneously and improves the accuracy of monocular 3D object detection. MonoDCN is able to significantly improve the performance of both monocular 3D object detection and Bird's Eye View tasks within the KITTI urban autonomous driving dataset.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Monocular 3D Object Detection Utilizing Auxiliary Learning With Deformable Convolution
    Chen, Jiun-Han
    Shieh, Jeng-Lun
    Haq, Muhamad Amirul
    Ruan, Shanq-Jang
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (03) : 2424 - 2436
  • [2] Disentangling Monocular 3D Object Detection
    Simonelli, Andrea
    Bulo, Samuel Rota
    Porzi, Lorenzo
    Lopez-Antequera, Manuel
    Kontschieder, Peter
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1991 - 1999
  • [3] Aerial Monocular 3D Object Detection
    Hu, Yue
    Fang, Shaoheng
    Xie, Weidi
    Chen, Siheng
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04): : 1959 - 1966
  • [4] Feature-Based Monocular Dynamic 3D Object Reconstruction
    Jin, Shaokun
    Ou, Yongsheng
    [J]. SOCIAL ROBOTICS, ICSR 2018, 2018, 11357 : 380 - 389
  • [5] Depth dynamic center difference convolutions for monocular 3D object detection
    Wu, Xinyu
    Ma, Dongliang
    Qu, Xin
    Jiang, Xin
    Zeng, Dan
    [J]. NEUROCOMPUTING, 2023, 520 : 73 - 81
  • [6] Monocular 3D Object Detection Based on Uncertainty Prediction of Keypoints
    Chen, Mu
    Zhao, Huaici
    Liu, Pengfei
    [J]. MACHINES, 2022, 10 (01)
  • [7] Monocular 3D Object Detection for Autonomous Driving
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhang, Ziyu
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2147 - 2156
  • [8] Dimension Embeddings for Monocular 3D Object Detection
    Zhang, Yunpeng
    Zheng, Wenzhao
    Zhu, Zheng
    Huang, Guan
    Du, Dalong
    Zhou, Jie
    Lu, Jiwen
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1579 - 1588
  • [9] Uncertainty Prediction for Monocular 3D Object Detection
    Mun, Junghwan
    Choi, Hyukdoo
    [J]. SENSORS, 2023, 23 (12)
  • [10] Multivariate Probabilistic Monocular 3D Object Detection
    Shi, Xuepeng
    Chen, Zhixiang
    Kim, Tae-Kyun
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 4270 - 4279