Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network

被引:44
|
作者
Michael, Neethu Elizabeth [1 ]
Hasan, Shazia [1 ]
Al-Durra, Ahmed [2 ]
Mishra, Manohar [3 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Elect & Elect Engn, Dubai Campus,POB 345055, Dubai, U Arab Emirates
[2] Khalifa Univ, Dept Elect & Comp Engn, POB 127788, Abu Dhabi 127788, U Arab Emirates
[3] Siksha O Anusandhan Univ, Inst Tech Educ & Res, Dept Elect & Elect Engn, POB 751030, Bhubaneswar, Odisha, India
关键词
Deep learning; Hyperparameter; LSTM neural network; Solar irradiance prediction; MODEL;
D O I
10.1016/j.apenergy.2022.119727
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate forecasting is indispensable for improving solar renewables integration and minimizing the effects of solar energy's intermittency. Existing research on time series solar forecasting confronts challenges such as determining the accurate hyperparameters and flexibility in considering meteorological parameters. This study proposes a novel deep learning model, namely an optimized stacked Bi-directional Long Short-Term Memory (BiLSTM)/ Long Short-Term Memory (LSTM) model to forecast univariate and multivariate hourly time series data by integrating stacked LSTM layers, drop out architecture, and LSTM based model. The performance of the model is enhanced by Bayesian optimization with the tuning of six relevant hyperparameters. To evaluate the model, standard Global Horizontal Irradiance (GHI) and observed Plane of Array (POA) irradiance with meteorological real-world solar data from Sweihan Photovoltaic Independent Power project in Abu Dhabi, UAE, and NREL solar data for year-round data are forecasted. Furthermore, the performance of the proposed algorithm is also evaluated under weather uncertainty for different climate types. The forecasting accuracy is evaluated based on various performance metrics and it is observed that the proposed model offered the best R-2 values, 0.99 for univariate as well as multivariate models using GHI data and 0.97 using POA data. The findings suggest that the proposed model is a reliable technique for solar prediction due to its comparable performance with both GHI and POA in terms of accuracy.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Short-Term Solar Irradiance Forecasting Based on a Hybrid Deep Learning Methodology
    Yan, Ke
    Shen, Hengle
    Wang, Lei
    Zhou, Huiming
    Xu, Meiling
    Mo, Yuchang
    INFORMATION, 2020, 11 (01)
  • [32] Short-term natural gas consumption prediction based on wavelet transform and bidirectional long short-term memory optimized by Bayesian network
    Li, Zhaoyang
    Liu, Liang
    Qiao, Weibiao
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (09) : 3281 - 3300
  • [33] Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting
    Qi, Yuanhang
    Luo, Haoyu
    Luo, Yuhui
    Liao, Rixu
    Ye, Liwei
    ENERGIES, 2023, 16 (17)
  • [34] Short-Term Traffic Flow Forecast Based on Parallel Long Short-Term Memory Neural Network
    Qiao, Songlin
    Sun, Rencheng
    Fan, Guangpeng
    Liu, Ji
    PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 253 - 257
  • [35] Deep learning with regularized robust long- and short-term memory network for probabilistic short-term load forecasting
    Jiang, He
    Zheng, Weihua
    JOURNAL OF FORECASTING, 2022, 41 (06) : 1201 - 1216
  • [36] Flight short-term booking demand forecasting based on a long short-term network
    He, Haonan
    Chen, Liangyu
    Wang, Shanyong
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 186
  • [37] Short-term Forecasting Approach Based on bidirectional long short-term memory and convolutional neural network for Regional Photovoltaic Power Plants
    Li, Gang
    Guo, Shunda
    Li, Xiufeng
    Cheng, Chuntian
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 34
  • [38] A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting
    Zhang, Fan
    Fleyeh, Hasan
    Bales, Chris
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2022, 73 (02) : 301 - 325
  • [39] Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow
    Chen, Quanchao
    Wen, Di
    Li, Xuqiang
    Chen, Dingjun
    Lv, Hongxia
    Zhang, Jie
    Gao, Peng
    PLOS ONE, 2019, 14 (09):
  • [40] A forecasting model for wave heights based on a long short-term memory neural network
    Song Gao
    Juan Huang
    Yaru Li
    Guiyan Liu
    Fan Bi
    Zhipeng Bai
    ActaOceanologicaSinica, 2021, 40 (01) : 62 - 69