A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting

被引:27
|
作者
Zhang, Fan [1 ,2 ]
Fleyeh, Hasan [3 ]
Bales, Chris [2 ]
机构
[1] Dalarna Univ, Dept Microdata Anal, S-79188 Falun, Sweden
[2] Dalarna Univ, Dept Energy Technol, Falun, Sweden
[3] Dalarna Univ, Dept Comp Engn, Falun, Sweden
关键词
Bidirectional long short-term memory neural network; deep learning; electricity price forecasting; machine learning; boosting algorithms; energy market; LSTM; MARKET;
D O I
10.1080/01605682.2020.1843976
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Electricity price forecasting plays a crucial role in a liberalised electricity market. Generally speaking, long-term electricity price is widely utilised for investment profitability analysis, grid or transmission expansion planning, while medium-term forecasting is important to markets that involve medium-term contracts. Typical applications of medium-term forecasting are risk management, balance sheet calculation, derivative pricing, and bilateral contracting. Short-term electricity price forecasting is essential for market providers to adjust the schedule of production, i.e., balancing consumers' demands and electricity generation. Results from short-term forecasting are utilised by market players to decide the timing of purchasing or selling to maximise profits. Among existing forecasting approaches, neural networks are regarded as the state of art method due to their capability of modelling high non-linearity and complex patterns inside time series data. However, deep neural networks are not studied comprehensively in this field, which represents a good motivation to fill this research gap. In this article, a deep neural network-based hybrid approach is proposed for short-term electricity price forecasting. To be more specific, categorical boosting (Catboost) algorithm is used for feature selection and a bidirectional long short-term memory neural network (BDLSTM) will serve as the main forecasting engine in the proposed method. To evaluate the effectiveness of the proposed approach, 2018 hourly electricity price data from the Nord Pool market are invoked as a case study. Moreover, the performance of the proposed approach is compared with those of multi-layer perception (MLP) neural network, support vector regression (SVR), ensemble tree, ARIMA as well as two recent deep learning-based models, gated recurrent units (GRU) and LSTM models. A real-world dataset of Nord Pool market is used in this study to validate the proposed approach. Mean percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) are used to measure the model performance. Experiment results show that the proposed model achieves lower forecasting errors than other models considered in this study although the proposed model is more time consuming in terms of training and forecasting.
引用
收藏
页码:301 / 325
页数:25
相关论文
共 50 条
  • [1] Short Term Electricity Spot Price Forecasting Using CatBoost and Bidirectional Long Short Term Memory Neural Network
    Zhang, Fan
    Fleyeh, Hasan
    2019 16TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM), 2019,
  • [2] A novel hybrid deep neural network model for short-term electricity price forecasting
    Huang, Chiou-Jye
    Shen, Yamin
    Chen, Yung-Hsiang
    Chen, Hsin-Chuan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (02) : 2511 - 2532
  • [3] Short-Term Electricity Price Forecasting Based on Adaptive Hybrid Model
    Lin, Xianping
    Zhou, Zhenpeng
    Tian, Jiming
    Li, Shaofei
    Qin, Jianhua
    Niu, Zengxian
    Fan, Xueyuan
    Liu, Ziyi
    2024 6TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES 2024, 2024, : 1340 - 1346
  • [4] Electricity Load and Price Forecasting Using a Hybrid Method Based Bidirectional Long Short-Term Memory with Attention Mechanism Model
    Gomez, William
    Wang, Fu-Kwun
    Amogne, Zemenu Endalamaw
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [5] Forecasting a Short-Term Photovoltaic Power Model Based on Improved Snake Optimization, Convolutional Neural Network, and Bidirectional Long Short-Term Memory Network
    Wang, Yonggang
    Yao, Yilin
    Zou, Qiuying
    Zhao, Kaixing
    Hao, Yue
    SENSORS, 2024, 24 (12)
  • [6] A Temporal Convolutional Network Based Hybrid Model for Short-Term Electricity Price Forecasting
    Zhang, Haoran
    Hu, Weihao
    Cao, Di
    Huang, Qi
    Chen, Zhe
    Blaabjerg, Frede
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2024, 10 (03): : 1119 - 1130
  • [7] Dynamic Hybrid Model for Short-Term Electricity Price Forecasting
    Cerjan, Marin
    Matijas, Marin
    Delimar, Marko
    ENERGIES, 2014, 7 (05) : 3304 - 3318
  • [8] Hybrid Model for Very Short-Term Electricity Price Forecasting
    Hamilton, Geoffrey
    Abeygunawardana, Anula
    Jovanovic, Dejan P.
    Ledwich, Gerard F.
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [9] Hybrid long short-term memory and bidirectional multichannel network cascaded with split convolution for short-term load forecasting
    Hasanat, Syed Muhammad
    Ullah, Irshad
    Aurangzeb, Khursheed
    Rizwan, Muhammad
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    Engineering Applications of Artificial Intelligence, 2025, 147
  • [10] Hybrid Short-term Load Forecasting Method Based on Empirical Wavelet Transform and Bidirectional Long Short-term Memory Neural Networks
    Zhang, Xiaoyu
    Kuenzel, Stefanie
    Colombo, Nicolo
    Watkins, Chris
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2022, 10 (05) : 1216 - 1228