Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network

被引:44
|
作者
Michael, Neethu Elizabeth [1 ]
Hasan, Shazia [1 ]
Al-Durra, Ahmed [2 ]
Mishra, Manohar [3 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Elect & Elect Engn, Dubai Campus,POB 345055, Dubai, U Arab Emirates
[2] Khalifa Univ, Dept Elect & Comp Engn, POB 127788, Abu Dhabi 127788, U Arab Emirates
[3] Siksha O Anusandhan Univ, Inst Tech Educ & Res, Dept Elect & Elect Engn, POB 751030, Bhubaneswar, Odisha, India
关键词
Deep learning; Hyperparameter; LSTM neural network; Solar irradiance prediction; MODEL;
D O I
10.1016/j.apenergy.2022.119727
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate forecasting is indispensable for improving solar renewables integration and minimizing the effects of solar energy's intermittency. Existing research on time series solar forecasting confronts challenges such as determining the accurate hyperparameters and flexibility in considering meteorological parameters. This study proposes a novel deep learning model, namely an optimized stacked Bi-directional Long Short-Term Memory (BiLSTM)/ Long Short-Term Memory (LSTM) model to forecast univariate and multivariate hourly time series data by integrating stacked LSTM layers, drop out architecture, and LSTM based model. The performance of the model is enhanced by Bayesian optimization with the tuning of six relevant hyperparameters. To evaluate the model, standard Global Horizontal Irradiance (GHI) and observed Plane of Array (POA) irradiance with meteorological real-world solar data from Sweihan Photovoltaic Independent Power project in Abu Dhabi, UAE, and NREL solar data for year-round data are forecasted. Furthermore, the performance of the proposed algorithm is also evaluated under weather uncertainty for different climate types. The forecasting accuracy is evaluated based on various performance metrics and it is observed that the proposed model offered the best R-2 values, 0.99 for univariate as well as multivariate models using GHI data and 0.97 using POA data. The findings suggest that the proposed model is a reliable technique for solar prediction due to its comparable performance with both GHI and POA in terms of accuracy.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A forecasting model for wave heights based on a long short-term memory neural network
    Song Gao
    Juan Huang
    Yaru Li
    Guiyan Liu
    Fan Bi
    Zhipeng Bai
    Acta Oceanologica Sinica, 2021, 40 : 62 - 69
  • [42] A forecasting model for wave heights based on a long short-term memory neural network
    Gao, Song
    Huang, Juan
    Li, Yaru
    Liu, Guiyan
    Bi, Fan
    Bai, Zhipeng
    ACTA OCEANOLOGICA SINICA, 2021, 40 (01) : 62 - 69
  • [43] Short-Term Prediction of Wind Power Based on Deep Long Short-Term Memory
    Qu Xiaoyun
    Kang Xiaoning
    Zhang Chao
    Jiang Shuai
    Ma Xiuda
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1148 - 1152
  • [44] Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach
    Husein, Munir
    Chung, Il-Yop
    ENERGIES, 2019, 12 (10)
  • [45] Short-Term Load Forecasting using Long Short Term Memory Optimized by Genetic Algorithm
    Zulfiqar, Muhammad
    Rasheed, Muhammad Babar
    2022 IEEE SUSTAINABLE POWER AND ENERGY CONFERENCE (ISPEC), 2022,
  • [46] Predicting Short-term Traffic Flow by Long Short-Term Memory Recurrent Neural Network
    Tian, Yongxue
    Pan, Li
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 153 - 158
  • [47] Short-Term Load Forecasting Model Based on Deep Neural Network
    Xue Hui
    Wang Qun
    Li Yao
    Zhang Yingbin
    Shi Lei
    Zhang Zhisheng
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 589 - 591
  • [48] A generalized model for short-term forecasting of solar irradiance
    Lago, Jesus
    De Brabandere, Karel
    De Ridder, Fjo
    De Schutter, Bart
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3165 - 3170
  • [49] Short-Term Photovoltaic Power Forecast Based on Long Short-Term Memory Network
    Shi, Min
    Xu, Ke
    Wang, Jue
    Yin, Rui
    Wang, Tieqiang
    Yong, Taiyou
    Hongyuan, Tianjin
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 2110 - 2116
  • [50] Long short term memory-convolutional neural network based deep hybrid approach for solar irradiance forecasting
    Kumari, Pratima
    Toshniwal, Durga
    APPLIED ENERGY, 2021, 295