SIMPLIFIED MAXIMUM LIKELIHOOD INFERENCE BASED ON THE LIKELIHOOD DECOMPOSITION FOR MISSING DATA

被引:0
|
作者
Jung, Sangah [1 ]
Park, Sangun [1 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
Fisher information ratio; likelihood decomposition; non-monotone missing data; MULTIVARIATE NORMAL-DISTRIBUTION; INCOMPLETE-DATA; CONTINGENCY-TABLES; SAMPLE-SURVEYS; EM ALGORITHM; PARAMETERS; MODELS;
D O I
10.1111/anzs.12040
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose an estimation method when sample data are incomplete. We decompose the likelihood according to missing patterns and combine the estimators based on each likelihood weighting by the Fisher information ratio. This approach provides a simple way of estimating parameters, especially for non-monotone missing data. Numerical examples are presented to illustrate this method.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 50 条
  • [1] Likelihood based frequentist inference when data are missing at random
    Kenward, MG
    Molenberghs, G
    STATISTICAL SCIENCE, 1998, 13 (03) : 236 - 247
  • [2] Likelihood-based Inference with Missing Data Under Missing-at-Random
    Yang, Shu
    Kim, Jae Kwang
    SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (02) : 436 - 454
  • [3] MISSING DATA AND MAXIMUM-LIKELIHOOD ESTIMATION
    HSIAO, C
    ECONOMICS LETTERS, 1980, 6 (03) : 249 - 253
  • [4] Empirical likelihood-based inference in linear models with missing data
    Wang, QH
    Rao, JNK
    SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (03) : 563 - 576
  • [5] Likelihood-based inference for spatiotemporal data with censored and missing responses
    Valeriano, Katherine A. L.
    Lachos, Victor H.
    Prates, Marcos O.
    Matos, Larissa A.
    ENVIRONMETRICS, 2021, 32 (03)
  • [6] Empirical likelihood inference for estimating equation with missing data
    Wang XiuLi
    Chen Fang
    Lin Lu
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (06) : 1233 - 1245
  • [7] Bayesian jackknife empirical likelihood-based inference for missing data and causal inference
    Chen, Sixia
    Wang, Yuke
    Zhao, Yichuan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2025, 53 (01):
  • [8] Empirical likelihood inference for estimating equation with missing data
    WANG XiuLi
    CHEN Fang
    LIN Lu
    Science China(Mathematics), 2013, 56 (06) : 1230 - 1242
  • [9] Monte Carlo likelihood inference for missing data models
    Sung, Yun Ju
    Geyer, Charles J.
    ANNALS OF STATISTICS, 2007, 35 (03): : 990 - 1011
  • [10] Empirical likelihood inference for estimating equation with missing data
    XiuLi Wang
    Fang Chen
    Lu Lin
    Science China Mathematics, 2013, 56 : 1233 - 1245