Monte Carlo likelihood inference for missing data models

被引:26
|
作者
Sung, Yun Ju [1 ]
Geyer, Charles J.
机构
[1] Washington Univ, Sch Med, Div Biostat, St Louis, MO 63110 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
来源
ANNALS OF STATISTICS | 2007年 / 35卷 / 03期
关键词
asymptotic theory; Monte Carlo; maximum likelihood; generalized linear mixed model; empirical process; model misspecification;
D O I
10.1214/009053606000001389
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a Monte Carlo method to approximate the maximum likelihood estimate (MLE), when there are missing data and the observed data likelihood is not available in closed form. This method uses simulated missing data that are independent and identically distributed and independent of the observed data. Our Monte Carlo approximation to the MLE is a consistent and asymptotically normal estimate of the minimizer theta* of the Kullback-Leibler information, as both Monte Carlo and observed data sample sizes go to infinity simultaneously. Plug-in estimates of the asymptotic variance are provided for constructing confidence regions for theta*. We give Logit-Normal generalized linear mixed model examples, calculated using an R package.
引用
收藏
页码:990 / 1011
页数:22
相关论文
共 50 条
  • [1] Monte Carlo modified profile likelihood in models for clustered data
    Di Caterina, Claudia
    Cortese, Giuliana
    Sartori, Nicola
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 432 - 464
  • [2] Empirical likelihood-based inference in linear models with missing data
    Wang, QH
    Rao, JNK
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (03) : 563 - 576
  • [3] Maximum Likelihood Inference for Multivariate Frailty Models Using an Automated Monte Carlo EM Algorithm
    Samuli Ripatti
    Klaus Larsen
    Juni Palmgren
    [J]. Lifetime Data Analysis, 2002, 8 : 349 - 360
  • [4] Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo EM algorithm
    Ripatti, S
    Larsen, K
    Palmgren, J
    [J]. LIFETIME DATA ANALYSIS, 2002, 8 (04) : 349 - 360
  • [5] Likelihood Inference for a COGARCH Process Using Sequential Monte Carlo
    Wee, Damien C. H.
    Chen, Feng
    Dunsmuir, William T. M.
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2019, 17 (02) : 229 - 253
  • [6] Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo
    Peis, Ignacio
    Ma, Chao
    Hernandez-Lobato, Jose Miguel
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] SIMPLIFIED MAXIMUM LIKELIHOOD INFERENCE BASED ON THE LIKELIHOOD DECOMPOSITION FOR MISSING DATA
    Jung, Sangah
    Park, Sangun
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2013, 55 (03) : 271 - 283
  • [8] Empirical likelihood inference for estimating equation with missing data
    Wang XiuLi
    Chen Fang
    Lin Lu
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (06) : 1233 - 1245
  • [9] Empirical likelihood inference for estimating equation with missing data
    WANG XiuLi
    CHEN Fang
    LIN Lu
    [J]. Science China Mathematics, 2013, 56 (06) : 1230 - 1242
  • [10] Empirical likelihood inference for estimating equation with missing data
    XiuLi Wang
    Fang Chen
    Lu Lin
    [J]. Science China Mathematics, 2013, 56 : 1233 - 1245