Asymptotically Mean Value Harmonic Functions in Doubling Metric Measure Spaces

被引:3
|
作者
Adamowicz, Tomasz [1 ]
Kijowski, Antoni [2 ]
Soultanis, Elefterios [3 ]
机构
[1] Polish Acad Sci, Inst Math, Warsaw, Poland
[2] GIST, Anal Metr Spaces Unit, Nago, Okinawa, Japan
[3] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands
来源
关键词
Asymptotic mean value property; elliptic PDEs; harmonic functions; Gromov-Hausdorff convergence; Holder continuity; mean value property; Sobolev spaces; weighted Euclidean spaces;
D O I
10.1515/agms-2022-0143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider functions with an asymptotic mean value property, known to characterize harmonicity in Riemannian manifolds and in doubling metric measure spaces. We show that the strongly amv-harmonic functions are Holder continuous for any exponent below one. More generally, we define the class of functions with finite amv-norm and show that functions in this class belong to a fractional Hajlasz-Sobolev space and their blow-ups satisfy the mean-value property. Furthermore, in the weighted Euclidean setting we find an elliptic PDE satisfied by amv-harmonic functions.
引用
收藏
页码:344 / 372
页数:29
相关论文
共 50 条