Some characterizations of upper doubling conditions on metric measure spaces

被引:4
|
作者
Tan, Chaoqiang [1 ]
Li, Ji [2 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Peoples R China
[2] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
关键词
Non-homogeneous; upper doubling; CALDERON-ZYGMUND OPERATORS; FRACTIONAL INTEGRALS; MORREY SPACES; T(1) THEOREM; HARDY-SPACES; H-1; INEQUALITIES; BOUNDEDNESS; COMMUTATORS; BMO;
D O I
10.1002/mana.201400347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide several equivalent characterizations for the upper doubling condition introduced in the framework of T. Hytonen for non-homogeneous metric measure spaces. We also introduce the "smooth strong upper doubling" condition and provide equivalent characterizations, which is related to the development of Littlewood Paley theory on this non-homogeneous setting. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:142 / 158
页数:17
相关论文
共 50 条