Some characterizations of upper doubling conditions on metric measure spaces

被引:4
|
作者
Tan, Chaoqiang [1 ]
Li, Ji [2 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Peoples R China
[2] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
关键词
Non-homogeneous; upper doubling; CALDERON-ZYGMUND OPERATORS; FRACTIONAL INTEGRALS; MORREY SPACES; T(1) THEOREM; HARDY-SPACES; H-1; INEQUALITIES; BOUNDEDNESS; COMMUTATORS; BMO;
D O I
10.1002/mana.201400347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide several equivalent characterizations for the upper doubling condition introduced in the framework of T. Hytonen for non-homogeneous metric measure spaces. We also introduce the "smooth strong upper doubling" condition and provide equivalent characterizations, which is related to the development of Littlewood Paley theory on this non-homogeneous setting. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:142 / 158
页数:17
相关论文
共 50 条
  • [41] CHARACTERIZATIONS OF SOME FUZZY TOPOLOGICAL NOTIONS IN PROBABILISTIC METRIC-SPACES
    AMER, MA
    MORSI, NN
    FUZZY SETS AND SYSTEMS, 1992, 51 (03) : 351 - 359
  • [42] Generalized fractional integral operators over non-doubling metric measure spaces
    Sawano, Yoshihiro
    Shimomura, Tetsu
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (07) : 534 - 546
  • [43] Every complete doubling metric space carries a doubling measure
    Luukkainen, J
    Saksman, E
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) : 531 - 534
  • [44] Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces
    Ambrosio, Luigi
    Mondino, Andrea
    Savare, Giuseppe
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 262 (1270) : 1 - +
  • [45] Trudinger’s Inequality on Musielak–Orlicz–Morrey Spaces Over Non-doubling Metric Measure Spaces
    Ritva Hurri-Syrjänen
    Takao Ohno
    Tetsu Shimomura
    Mediterranean Journal of Mathematics, 2023, 20
  • [46] Boundedness of Lusin-area and gλ* functions on localized BMO spaces over doubling metric measure spaces
    Lin, Haibo
    Nakai, Eiichi
    Yang, Dachun
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (01): : 59 - 88
  • [47] REMARKS ABOUT SYNTHETIC UPPER RICCI BOUNDS FOR METRIC MEASURE SPACES
    Sturm, Karl-Theodor
    TOHOKU MATHEMATICAL JOURNAL, 2021, 73 (04) : 539 - 564
  • [48] Nagy type inequalities in metric measure spaces and some applications
    Babenko, V. F.
    Babenko, V. V.
    Kovalenko, O., V
    Parfinovych, N., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2023, 15 (02) : 563 - 575
  • [49] Heat Kernel Bounds on Metric Measure Spaces and Some Applications
    Jiang, Renjin
    Li, Huaiqian
    Zhang, Huichun
    POTENTIAL ANALYSIS, 2016, 44 (03) : 601 - 627
  • [50] Heat Kernel Bounds on Metric Measure Spaces and Some Applications
    Renjin Jiang
    Huaiqian Li
    Huichun Zhang
    Potential Analysis, 2016, 44 : 601 - 627