Spectral multipliers on exponentially locally doubling metric measure spaces

被引:0
|
作者
Guorong Hu
机构
[1] Jiangxi Normal University,Department of Mathematics
关键词
Spectral multipliers; Metric measure spaces; Heat kernel; Functional calculus; 47A60; 35P99; 43A85;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X,ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \rho )$$\end{document} be a geodesic space endowed with a positive Borel measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} which satisfies an exponentially locally doubling condition. Assume that L is a nonnegative self-adjoint operator on L2(X,dμ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}(X,\text {d}\mu )$$\end{document} whose heat kernel obeys a local Gaussian upper bound. In this paper, we prove that if Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} is a bounded even holomorphic function in a suitable strip of the complex plane, and satisfies the Mihlin-type condition of appropriate order at infinity, then the operator Φ(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi (\sqrt{L})$$\end{document} extends to an operator bounded on Lp(X,dμ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}(X,\text {d}\mu )$$\end{document} for 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document} and of weak type (1, 1). This partially extends some existing results concerning spherical multipliers on symmetric spaces of noncompact type and spectral multipliers on Riemannian manifolds with bounded geometry.
引用
收藏
页码:1151 / 1173
页数:22
相关论文
共 50 条
  • [1] Spectral multipliers on exponentially locally doubling metric measure spaces
    Hu, Guorong
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (04) : 1151 - 1173
  • [2] H1 and BMO for certain locally doubling metric measure spaces
    Carbonaro, Andrea
    Mauceri, Giancarlo
    Meda, Stefano
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2009, 8 (03) : 543 - 582
  • [3] H1 AND BMO FOR CERTAIN LOCALLY DOUBLING METRIC MEASURE SPACES OF FINITE MEASURE
    Carbonaro, Andrea
    Mauceri, Giancarlo
    Meda, Stefano
    COLLOQUIUM MATHEMATICUM, 2010, 118 (01) : 13 - 41
  • [4] Heat Kernels on Metric Spaces with Doubling Measure
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    FRACTAL GEOMETRY AND STOCHASTICS IV, 2009, 61 : 3 - +
  • [5] DIFFERENTIABILITY, POROSITY AND DOUBLING IN METRIC MEASURE SPACES
    Bate, David
    Speight, Gareth
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (03) : 971 - 985
  • [6] Absolutely continuous mappings on doubling metric measure spaces
    Panu Lahti
    Xiaodan Zhou
    manuscripta mathematica, 2024, 173 : 1 - 21
  • [7] Absolutely continuous mappings on doubling metric measure spaces
    Lahti, Panu
    Zhou, Xiaodan
    MANUSCRIPTA MATHEMATICA, 2024, 173 (1-2) : 1 - 21
  • [8] Spectral multipliers via resolvent type estimates on non-homogeneous metric measure spaces
    Chen, Peng
    Sikora, Adam
    Yan, Lixin
    MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (1-2) : 555 - 570
  • [9] Spectral multipliers via resolvent type estimates on non-homogeneous metric measure spaces
    Peng Chen
    Adam Sikora
    Lixin Yan
    Mathematische Zeitschrift, 2020, 294 : 555 - 570
  • [10] Indecomposable sets of finite perimeter in doubling metric measure spaces
    Bonicatto, Paolo
    Pasqualetto, Enrico
    Rajala, Tapio
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)