Spectral multipliers on exponentially locally doubling metric measure spaces

被引:0
|
作者
Guorong Hu
机构
[1] Jiangxi Normal University,Department of Mathematics
关键词
Spectral multipliers; Metric measure spaces; Heat kernel; Functional calculus; 47A60; 35P99; 43A85;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X,ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \rho )$$\end{document} be a geodesic space endowed with a positive Borel measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} which satisfies an exponentially locally doubling condition. Assume that L is a nonnegative self-adjoint operator on L2(X,dμ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}(X,\text {d}\mu )$$\end{document} whose heat kernel obeys a local Gaussian upper bound. In this paper, we prove that if Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} is a bounded even holomorphic function in a suitable strip of the complex plane, and satisfies the Mihlin-type condition of appropriate order at infinity, then the operator Φ(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi (\sqrt{L})$$\end{document} extends to an operator bounded on Lp(X,dμ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}(X,\text {d}\mu )$$\end{document} for 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document} and of weak type (1, 1). This partially extends some existing results concerning spherical multipliers on symmetric spaces of noncompact type and spectral multipliers on Riemannian manifolds with bounded geometry.
引用
收藏
页码:1151 / 1173
页数:22
相关论文
共 50 条
  • [41] Distributed spanner construction in doubling metric spaces
    Damian, Mirela
    Pandit, Saurav
    Pemmaraju, Sriram
    PRINCIPLES OF DISTRIBUTED SYSTEMS, PROCEEDINGS, 2006, 4305 : 157 - 171
  • [42] Besicovitch and doubling type properties in metric spaces
    Aldaz, J. M.
    HOKKAIDO MATHEMATICAL JOURNAL, 2023, 52 (02) : 267 - 283
  • [43] Hausdorff dimension and doubling measures on metric spaces
    Wu, JM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (05) : 1453 - 1459
  • [44] Trudinger's Inequality on Musielak-Orlicz-Morrey Spaces Over Non-doubling Metric Measure Spaces
    Hurri-Syrjanen, Ritva
    Ohno, Takao
    Shimomura, Tetsu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [45] Multipliers on rank one locally symmetric spaces
    Fotiadis, Anestis
    Marias, Michel
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) : 277 - 284
  • [46] Multipliers on rank one locally symmetric spaces
    Anestis Fotiadis
    Michel Marias
    Mathematische Zeitschrift, 2010, 265 : 277 - 284
  • [47] Oscillating multipliers on symmetric and locally symmetric spaces
    Papageorgiou, Effie
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (03): : 887 - 905
  • [48] MARKED METRIC MEASURE SPACES
    Depperschmidt, Andrej
    Greven, Andreas
    Pfaffelhuber, Peter
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 174 - 188
  • [49] On the measure contraction property of metric measure spaces
    Ohta, Shin-ichi
    COMMENTARII MATHEMATICI HELVETICI, 2007, 82 (04) : 805 - 828
  • [50] Pointwise Multipliers on BMO Spaces with Non-doubling Measures
    Li, Wei
    Nakai, Eiichi
    Yang, Dongyong
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (01): : 183 - 203