Comparison of Multi-resolution Analysis Patterns for Texture Classification of Breast Tumors Based on DCE-MRI

被引:10
|
作者
Tzalavra, Alexia [1 ]
Dalakleidi, Kalliopi [1 ]
Zacharaki, Evangelia I. [2 ]
Tsiaparas, Nikolaos [1 ]
Constantinidis, Fotios [3 ]
Paragios, Nikos [2 ]
Nikita, Konstantina S. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens, Greece
[2] Univ Paris Saclay, Inria, CentraleSupelec, St Aubin, France
[3] NHS Greater Glasgow & Clyde, Glasgow, Lanark, Scotland
关键词
Breast tumor diagnosis; DCE-MRI; Texture; Wavelet; Classification; FEATURES; LESIONS; DIAGNOSIS; FRAMEWORK;
D O I
10.1007/978-3-319-47157-0_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although Fourier and Wavelet Transform have been widely used for texture classification methods in medical images, the discrimination performance of FDCT has not been investigated so far in respect to breast cancer detection..n this paper, three multi-resolution transforms, namely the Discrete Wavelet Transform (DWT), the Stationary Wavelet Transform (SWT) and the Fast Discrete Curvelet Transform (FDCT) were comparatively assessed with respect to their ability to discriminate between malignant and benign breast tumors in Dynamic Contrast-Enhanced Magnetic Resonance Images (DCE-MRI). The mean and entropy of the detail sub-images for each decomposition scheme were used as texture features, which were subsequently fed as input into several classifiers. FDCT features fed to a Linear Discriminant Analysis (LDA) classifier produced the highest overall classification performance (93.18 % Accuracy).
引用
收藏
页码:296 / 304
页数:9
相关论文
共 50 条
  • [21] An Investigation of Deep Learning for Lesions Malignancy Classification in Breast DCE-MRI
    Marrone, Stefano
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    [J]. IMAGE ANALYSIS AND PROCESSING (ICIAP 2017), PT II, 2017, 10485 : 479 - 489
  • [22] DCE-MRI Texture Features for Early Prediction of Breast Cancer Therapy Response
    Thibault, Guillaume
    Tudorica, Alina
    Afzal, Aneela
    Chui, Stephen Y-C
    Naik, Arpana
    Troxell, Megan L.
    Kemmer, Kathleen A.
    Oh, Karen Y.
    Roy, Nicole
    Jafarian, Neda
    Holtorf, Megan L.
    Huang, Wei
    Song, Xubo
    [J]. TOMOGRAPHY, 2017, 3 (01) : 23 - 32
  • [23] DCE-MRI interpolation using learned transformations for breast lesions classification
    Hongyu Wang
    Cong Gao
    Jun Feng
    Xiaoying Pan
    Di Yang
    Baoying Chen
    [J]. Multimedia Tools and Applications, 2021, 80 : 26237 - 26254
  • [24] High spatial and temporal resolution breast DCE-MRI: A feasibility study
    Roy, N.
    Oh, K. Y.
    Kettler, M. D.
    Tudorica, L. A.
    Huang, W.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (27)
  • [25] DCE-MRI interpolation using learned transformations for breast lesions classification
    Wang, Hongyu
    Gao, Cong
    Feng, Jun
    Pan, Xiaoying
    Yang, Di
    Chen, Baoying
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (17) : 26237 - 26254
  • [26] BreastDM: A DCE-MRI dataset for breast tumor image segmentation and classification
    Zhao, Xiaoming
    Liao, Yuehui
    Xie, Jiahao
    He, Xiaxia
    Zhang, Shiqing
    Wang, Guoyu
    Fang, Jiangxiong
    Lu, Hongsheng
    Yu, Jun
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [27] LBP-TOP for Volume Lesion Classification in Breast DCE-MRI
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 647 - 657
  • [28] SEGMENTATION AND CLASSIFICATION OF TRIPLE NEGATIVE BREAST CANCERS USING DCE-MRI
    Agner, Shannon C.
    Xu, Jun
    Fatakdawala, Hussain
    Ganesan, Shridar
    Madabhushi, Anant
    Englander, Sarah
    Rosen, Mark
    Thomas, Kathleen
    Schnall, Mitehell
    Feldman, Miehael
    Tomaszewski, John
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1227 - +
  • [29] Texture Analysis of Breast DCE-MRI Based on Intratumoral Subregions for Predicting HER2 2+Status
    Lu, Hecheng
    Yin, Jiandong
    [J]. FRONTIERS IN ONCOLOGY, 2020, 10
  • [30] Multi-modality radiomics nomogram based on DCE-MRI and ultrasound images for benign and malignant breast lesion classification
    Liu, Xinmiao
    Zhang, Ji
    Zhou, Jiejie
    He, Yun
    Xu, Yunyu
    Zhang, Zhenhua
    Cao, Guoquan
    Miao, Haiwei
    Chen, Zhongwei
    Zhao, Youfan
    Jin, Xiance
    Wang, Meihao
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12