IMPROVING TUNNELING SIMULATION USING BAYESIAN UPDATING AND HIDDEN MARKOV CHAINS

被引:0
|
作者
Werner, Michael [1 ]
Ji, Wenying [1 ]
AbouRizk, Simaan [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PROBABILISTIC FUNCTIONS; PREDICTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Ground conditions remain an uncertain factor in tunneling projects, complicating the ability of practitioners to reliably estimate project productivity and, in turn, duration. This study proposes a Bayesian-based approach to incorporate real-time project data into simulation-based ground prediction models to improve prediction accuracy. Changes in ground conditions are modeled using a Hidden Markov Model, which is updated with actual project data using the Baum-Welch algorithm. The prediction model is then incorporated in Simphony. NET to enhance simulation of tunneling construction operations. A case study conducted in Edmonton, Canada, demonstrates that the proposed approach is capable of incorporating real-time data in a manner that resulted in enhanced duration prediction accuracy.
引用
收藏
页码:3930 / 3940
页数:11
相关论文
共 50 条
  • [1] A Comparison of Multiple Markov Chains Algorithms for Bayesian Updating
    Sherri, Marwan
    Boulkaibet, Ilyes
    Marwala, Tshilidzi
    Friswell, Michael
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 111 - 116
  • [2] Improving clustering with hidden Markov models using Bayesian model selection
    Li, C
    Biswas, G
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 194 - 199
  • [3] Markov Chain Monte Carlo Simulation for Bayesian Hidden Markov Models
    Chan, Lay Guat
    Ibrahim, Adriana Irawati Nur Binti
    4TH INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2016), 2016, 1782
  • [4] Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation
    Beck, JL
    Au, SK
    JOURNAL OF ENGINEERING MECHANICS, 2002, 128 (04) : 380 - 391
  • [5] BAYESIAN-ESTIMATION OF HIDDEN MARKOV-CHAINS - A STOCHASTIC IMPLEMENTATION
    ROBERT, CP
    CELEUX, G
    DIEBOLT, J
    STATISTICS & PROBABILITY LETTERS, 1993, 16 (01) : 77 - 83
  • [6] Improving Graduation Rate Estimates Using Regularly Updating Multi-Level Absorbing Markov Chains
    Boumi, Shahab
    Vela, Adan Ernesto
    EDUCATION SCIENCES, 2020, 10 (12): : 1 - 18
  • [7] Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields
    Fjortoft, R
    Delignon, Y
    Pieczynski, W
    Sigelle, M
    Tupin, F
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (03): : 675 - 686
  • [8] Nonhomogeneous Markov chains for degeneration behaviour of RC members' durability and its Bayesian updating
    Guo, Ruiqi
    Li, Dengguo
    Chen, Guoxin
    Jin, Yu
    Li, Hui
    Zhang, Yuanpeng
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22
  • [9] Haplotype inference using a Bayesian Hidden Markov model
    Sun, Shuying
    Greenwood, Celia M. T.
    Neal, Radford M.
    GENETIC EPIDEMIOLOGY, 2007, 31 (08) : 937 - 948
  • [10] Distinguishing Hidden Markov Chains
    Kiefer, Stefan
    Sistla, A. Prasad
    PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 66 - 75