Triangle-Free Subgraphs of Random Graphs

被引:0
|
作者
Allen, Peter [1 ]
Bottcher, Julia [1 ]
Kohayakawa, Yoshiharu [2 ]
Roberts, Barnaby [1 ]
机构
[1] London Sch Econ & Polit Sci, Dept Math, Houghton St, London WC2A 2AE, England
[2] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
来源
COMBINATORICS PROBABILITY & COMPUTING | 2018年 / 27卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1017/S0963548317000219
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently there has been much interest in studying random graph analogues of well-known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n, p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n, p) with minimum degree at least (2/5 + o(1)) pn is O(p(-1)n)-close to bipartite, and each spanning triangle-free subgraph of G(n, p) with minimum degree at least (1/3 + epsilon) pn is O(p(-1)n)-close to r-partite for some r = r(e). These are random graph analogues of a result by Andrasfai, Erdos and Sos (Discrete Math. 8 (1974), 205-218), and a result by Thomassen (Combinatorica 22 (2002), 591-596). We also show that our results are best possible up to a constant factor.
引用
收藏
页码:141 / 161
页数:21
相关论文
共 50 条
  • [21] Random Cyclic Triangle-Free Graphs of Prime Order
    Jiang, Yu
    Liang, Meilian
    Teng, Yanmei
    Xu, Xiaodong
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [22] K4-free graphs without large induced triangle-free subgraphs
    Guy Wolfovitz
    Combinatorica, 2013, 33 : 623 - 631
  • [23] K 4-free graphs without large induced triangle-free subgraphs
    Wolfovitz, Guy
    COMBINATORICA, 2013, 33 (05) : 623 - 631
  • [24] Median graphs and triangle-free graphs
    Imrich, W
    Klavzar, S
    Mulder, HM
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 111 - 118
  • [25] Triangle-free equimatchable graphs
    Buyukcolak, Yasemin
    Ozkan, Sibel
    Gozupek, Didem
    JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 461 - 484
  • [26] On triangle-free projective graphs
    Hazan, S
    ALGEBRA UNIVERSALIS, 1996, 35 (02) : 185 - 196
  • [27] On the evolution of triangle-free graphs
    Steger, A
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (1-2): : 211 - 224
  • [28] Triangle-free polyconvex graphs
    Isaksen, DC
    Robinson, B
    ARS COMBINATORIA, 2002, 64 : 259 - 263
  • [29] ON MAXIMAL TRIANGLE-FREE GRAPHS
    ERDOS, P
    HOLZMAN, R
    JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 585 - 594
  • [30] CYCLES IN TRIANGLE-FREE GRAPHS
    Li, Xiaojuan
    Wei, Bing
    Zhu, Yongjin
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (03) : 343 - 356