Triangle-free equimatchable graphs

被引:3
|
作者
Buyukcolak, Yasemin [1 ]
Ozkan, Sibel [1 ]
Gozupek, Didem [2 ]
机构
[1] Gebze Tech Univ, Dept Math, TR-41400 Kocaeli, Turkey
[2] Gebze Tech Univ, Dept Comp Engn, Kocaeli, Turkey
关键词
equimatchable; factor-critical; girth; graph families; triangle-free; RECOGNITION;
D O I
10.1002/jgt.22750
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called equimatchable if all of its maximal matchings have the same size. Frendrup et al. provided a characterization of equimatchable graphs with girth at least 5. In this paper, we extend this result by providing a complete structural characterization of equimatchable graphs with girth at least 4, that is, equimatchable graphs with no triangle, by identifying the equimatchable triangle-free graph families. Our characterization also extends the result given by Akbari et al., which proves that the only connected triangle-free equimatchable r-regular graphs are C 5, C 7, and K r , r, where r is a positive integer. Given a nonbipartite graph, our characterization implies a linear time recognition algorithm for triangle-free equimatchable graphs.
引用
收藏
页码:461 / 484
页数:24
相关论文
共 50 条
  • [1] Median graphs and triangle-free graphs
    Imrich, W
    Klavzar, S
    Mulder, HM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 111 - 118
  • [2] On triangle-free random graphs
    Luczak, T
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (03) : 260 - 276
  • [3] On triangle-free projective graphs
    Hazan, S
    [J]. ALGEBRA UNIVERSALIS, 1996, 35 (02) : 185 - 196
  • [4] ON MAXIMAL TRIANGLE-FREE GRAPHS
    ERDOS, P
    HOLZMAN, R
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 585 - 594
  • [5] On the evolution of triangle-free graphs
    Steger, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (1-2): : 211 - 224
  • [6] Triangle-free polyconvex graphs
    Isaksen, DC
    Robinson, B
    [J]. ARS COMBINATORIA, 2002, 64 : 259 - 263
  • [7] CYCLES IN TRIANGLE-FREE GRAPHS
    Li, Xiaojuan
    Wei, Bing
    Zhu, Yongjin
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (03) : 343 - 356
  • [8] The diagnosability of triangle-free graphs
    Lin, Cheng-Kuan
    Teng, Yuan-Hsiang
    [J]. THEORETICAL COMPUTER SCIENCE, 2014, 530 : 58 - 65
  • [9] TOUGHNESS AND TRIANGLE-FREE GRAPHS
    BAUER, D
    VANDENHEUVEL, J
    SCHMEICHEL, E
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 65 (02) : 208 - 221
  • [10] THE SPECTRUM OF TRIANGLE-FREE GRAPHS
    Balogh, Jozsef
    Clemen, Felix Christian
    Lidick, Bernard
    Norin, Sergey
    Volec, Jan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1173 - 1179