Triangle-Free Subgraphs of Random Graphs

被引:0
|
作者
Allen, Peter [1 ]
Bottcher, Julia [1 ]
Kohayakawa, Yoshiharu [2 ]
Roberts, Barnaby [1 ]
机构
[1] London Sch Econ & Polit Sci, Dept Math, Houghton St, London WC2A 2AE, England
[2] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
来源
COMBINATORICS PROBABILITY & COMPUTING | 2018年 / 27卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1017/S0963548317000219
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently there has been much interest in studying random graph analogues of well-known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n, p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n, p) with minimum degree at least (2/5 + o(1)) pn is O(p(-1)n)-close to bipartite, and each spanning triangle-free subgraph of G(n, p) with minimum degree at least (1/3 + epsilon) pn is O(p(-1)n)-close to r-partite for some r = r(e). These are random graph analogues of a result by Andrasfai, Erdos and Sos (Discrete Math. 8 (1974), 205-218), and a result by Thomassen (Combinatorica 22 (2002), 591-596). We also show that our results are best possible up to a constant factor.
引用
收藏
页码:141 / 161
页数:21
相关论文
共 50 条
  • [31] The diagnosability of triangle-free graphs
    Lin, Cheng-Kuan
    Teng, Yuan-Hsiang
    THEORETICAL COMPUTER SCIENCE, 2014, 530 : 58 - 65
  • [32] TOUGHNESS AND TRIANGLE-FREE GRAPHS
    BAUER, D
    VANDENHEUVEL, J
    SCHMEICHEL, E
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 65 (02) : 208 - 221
  • [33] THE SPECTRUM OF TRIANGLE-FREE GRAPHS
    Balogh, Jozsef
    Clemen, Felix Christian
    Lidick, Bernard
    Norin, Sergey
    Volec, Jan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1173 - 1179
  • [34] ON SMALL TRIANGLE-FREE GRAPHS
    HANSON, D
    MACGILLIVRAY, G
    ARS COMBINATORIA, 1993, 35 : 257 - 263
  • [35] TRIANGLE-FREE REGULAR GRAPHS
    SIDORENKO, AF
    DISCRETE MATHEMATICS, 1991, 91 (02) : 215 - 217
  • [36] Pentagons in triangle-free graphs
    Lidicky, Bernard
    Pfender, Florian
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 74 : 85 - 89
  • [37] MINIMUM TRIANGLE-FREE GRAPHS
    RADZISZOWSKI, SP
    KREHER, DL
    ARS COMBINATORIA, 1991, 31 : 65 - 92
  • [38] A counterexample to a conjecture about triangle-free induced subgraphs of graphs with large chromatic number
    Carbonero, Alvaro
    Hompe, Patrick
    Moore, Benjamin
    Spirkl, Sophie
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 158 : 63 - 69
  • [39] On line graphs of subcubic triangle-free graphs
    Munaro, Andrea
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1210 - 1226
  • [40] Triangle-free induced subgraphs of the unitary polarity graph
    Mattheus, Sam
    Pavese, Francesco
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 72 : 83 - 96