Fast Bit-Parallel Polynomial Basis Multiplier for GF(2m) Defined by Pentanomials Using Weakly Dual Basis

被引:1
|
作者
Park, Sun-Mi [1 ]
Chang, Ku-Young [2 ]
Hong, Dowon [1 ]
Seo, Changho [1 ]
机构
[1] Kongju Natl Univ, Dept Appl Math, Gongju Si 314701, Chungnam, South Korea
[2] Elect & Telecommun Res Inst, Cryptog Res Team, Taejon, South Korea
基金
新加坡国家研究基金会;
关键词
finite field arithmetic; pentanomials; bit-parallel multiplier; polynomial basis; weakly dual basis; IRREDUCIBLE PENTANOMIALS;
D O I
10.1587/transfun.E96.A.322
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we derive a fast polynomial basis multiplier for GF(2(m)) defined by pentanomials x(m) + x(k3) + x(k2) + x(k1) + 1 with 1 <= k(1) < k(2) < k(3) <= m/2 using the presented method by Park and Chang. The proposed multiplier has the time delay T-A (2 + left perpendicularlog(2)(m - 1)right perpendicular)T-X or T-A + (3 + left perpendicularlog(2)(m - 1)right perpendicular)T-X which is the lowest one compared with known multipliers for pentanomials except for special types, where T-A and T-X denote the delays of one AND gate and one XOR gate, respectively. On the other hand, its space complexity is very slightly greater than the best known results.
引用
收藏
页码:322 / 331
页数:10
相关论文
共 50 条
  • [31] Low complexity bit parallel architectures for polynomial basis multiplication over GF(2m)
    Reyhani-Masoleh, A
    Hasan, MA
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2004, 53 (08) : 945 - 959
  • [32] Bit-parallel polynomial basis multiplier for new classes of finite fields
    Wu, Huapeng
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2008, 57 (08) : 1023 - 1031
  • [33] High-Speed Polynomial Basis Multipliers Over GF(2m) for Special Pentanomials
    Imana, Jose L.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2016, 63 (01) : 58 - 69
  • [34] Low complexity bit-parallel systolic multiplier over GF(2m) using irreducible trinomials
    Lee, CY
    [J]. IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2003, 150 (01): : 39 - 42
  • [35] Parallel Algorithm for Polynomial Basis Multiplier in GF(2(m)) Fields
    Chiou, Che-Wun
    Jeng, Huey-Lin
    [J]. JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2008, 11 (02): : 211 - 218
  • [36] Efficient Digit Serial Dual Basis GF(2m) Multiplier
    Chang, Po-Lun
    Hsieh, Fei-Hu
    Chen, Liang-Hwa
    Lee, Chiou-Yng
    [J]. ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 1, 2010, : 180 - +
  • [37] SCALABLE AND SYSTOLIC DUAL BASIS MULTIPLIER OVER GF(2m)
    Chen, Liang-Hwa
    Chang, Po-Lun
    Lee, Chiou-Yng
    Yang, Ying-Kuei
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (03): : 1193 - 1208
  • [38] Fault Tolerant Dual Basis Multiplier Over GF(2m)
    Lee, Chiou-Yng
    Meher, Pramod Kumar
    [J]. IEEE CIRCUITS AND SYSTEMS INTERNATIONAL CONFERENCE ON TESTING AND DIAGNOSIS, 2009, : 436 - +
  • [39] A novel scalable dual basis GF(2m) multiplier architecture
    Chen L.-H.
    Chang Y.-C.
    Lee C.-Y.
    Chang P.-L.
    [J]. Journal of Computers (Taiwan), 2017, 28 (01) : 87 - 103
  • [40] Concurrent error detection in a polynomial basis multiplier over GF(2m)
    Lee, CY
    Chiou, CW
    Lin, JM
    [J]. JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2006, 22 (02): : 143 - 150