Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects

被引:136
|
作者
Deng, Shaohui [1 ]
Li, Xiaoxia [1 ]
Liu, Shuang [1 ,2 ]
Chen, Jifeng [1 ]
Li, Mingqiang [3 ]
Chew, Sing Yian [4 ,5 ]
Leong, Kam W. [6 ]
Cheng, Du [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, PCFM Lab, Minist Educ, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Zhongshan Sch Med, Guangzhou 510275, Peoples R China
[3] Sun Yat Sen Univ, Affiliated Hosp 3, Lab Biomat & Translat Med, Guangzhou 510630, Peoples R China
[4] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[5] Nanyang Technol Univ, Lee Kong Chian Sch Med, Singapore 308232, Singapore
[6] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
CAS9; RIBONUCLEOPROTEIN; DELIVERY; SIRNA; THERAPY;
D O I
10.1126/sciadv.abb4005
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Controlled release of CRISPR-Cas9 ribonucleoprotein (RNP) and codelivery with other drugs remain a challenge. We demonstrate controlled release of CRISPR-Cas9 RNP and codelivery with antitumor photosensitizer chlorin e6 (Ce6) using near-infrared (NIR)- and reducing agent-responsive nanoparticles in a mouse tumor model. Nitrilotri-acetic acid-decorated micelles can bind His-tagged Cas9 RNP. Lysosomal escape of nanoparticles was triggered by NIR-induced reactive oxygen species (ROS) generation by Ce6 in tumor cells. Cytoplasmic release of Cas9/single-guide RNA (sgRNA) was achieved by reduction of disulfide bond. Cas9/sgRNA targeted the antioxidant regulator Nrf2, enhancing tumor cell sensitivity to ROS. Without NIR irradiation, Cas9 was degraded in lysosomes and gene editing failed in normal tissues. The synergistic effects of Ce6 photodynamic therapy and Nrf2 gene editing were confirmed in vivo. Controlled release of CRISPR-Cas9 RNP and codelivery with Ce6 using stimuli-responsive nanoparticles represent a versatile strategy for gene editing with potentially synergistic drug effects.
引用
收藏
页数:14
相关论文
共 40 条
  • [11] Sono-Controllable and ROS-Sensitive CRISPR-Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy
    Pu, Yinying
    Yin, Haohao
    Dong, Caihong
    Xiang, Huijing
    Wu, Wencheng
    Zhou, Bangguo
    Du, Dou
    Chen, Yu
    Xu, Huixiong
    ADVANCED MATERIALS, 2021, 33 (45)
  • [12] Precision Genome Editing: Identification of Highly Efficient and Specific Guides for CRISPR-Cas9 Gene Editing in Human T Cell Loci
    Garner, Elizabeth
    Donohoue, Paul
    Lau, Elaine
    Vidal, Bastien
    Settle, Alex
    Irby, Matthew
    Rotstein, Tomer
    Banh, Lynda
    Toh, Mckenzi
    Williams, Carolyn
    Smith, Stephen
    Gradia, Scott
    Stengel, Katharina
    Kohrs, Bryan
    Fuller, Christopher
    Kennedy, Rachel
    Eshghi, Shawdee
    Slorach, Euan
    van Overbeek, Megan
    May, Andrew
    Kanner, Steven
    MOLECULAR THERAPY, 2019, 27 (04) : 388 - 388
  • [13] Rapid in vivo testing of tumor suppressors in ILC by CRISPR-Cas9 mediated somatic gene editing of the mammary gland
    Annunziato, Stefano
    Kas, Sjors
    Nethe, Micha
    Yucel, Hatice
    del Bravo, Jessica
    Pritchard, Colin
    Bin Ali, Rahmen
    van Gerwen, Bas
    Siteur, Bjorn
    Drenth, Anne Paulien
    Schut-Kregel, Eva
    Klarenbeek, Sjoerd
    Huijbers, Ivo
    van Miltenburg, Martine
    Jonkers, Jos
    CANCER RESEARCH, 2016, 76
  • [14] Identification of a novel ASGPr ligand and application to receptor mediated delivery and celltype specific gene editing with CRISPR-Cas9 ribonucleoproteins
    Thuma, Benjamin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [15] Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform
    Pan, Yongchun
    Yang, Jingjing
    Luan, Xiaowei
    Liu, Xinli
    Li, Xueqing
    Yang, Jian
    Huang, Ting
    Sun, Lu
    Wang, Yuzhen
    Lin, Youhui
    Song, Yujun
    SCIENCE ADVANCES, 2019, 5 (04)
  • [16] Identifying cooperative effects of tumor suppressor gene mutations in lung adenocarcinoma using paired CRISPR-Cas9
    Perez-Oquendo, Mabel G.
    Feldser, David M.
    Walter, David
    CANCER RESEARCH, 2018, 78 (13)
  • [17] Generation of CD19-specific CAR NK cells using virus-free CRISPR-Cas9 gene editing
    Franke, C.
    Kath, J.
    Glaser, V.
    Du, W.
    Drosdek, V.
    Wagner, D. L.
    HUMAN GENE THERAPY, 2022, 33 (23-24) : A128 - A128
  • [18] Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects
    Emanuel Gonçalves
    Fiona M. Behan
    Sandra Louzada
    Damien Arnol
    Euan A. Stronach
    Fengtang Yang
    Kosuke Yusa
    Oliver Stegle
    Francesco Iorio
    Mathew J. Garnett
    Genome Biology, 20
  • [19] Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects
    Goncalves, Emanuel
    Behan, Fiona M.
    Louzada, Sandra
    Arnol, Damien
    Stronach, Euan A.
    Yang, Fengtang
    Yusa, Kosuke
    Stegle, Oliver
    Iorio, Francesco
    Garnett, Mathew J.
    GENOME BIOLOGY, 2019, 20 (1)
  • [20] Plasmid-Based CRISPR-Cas9 Gene Editing in Multiple Candida Species (vol 4, e00125-19, 2019)
    Lombardi, Lisa
    Oliveira-Pacheco, Joao
    Butler, Geraldine
    MSPHERE, 2020, 5 (03):