Sono-Controllable and ROS-Sensitive CRISPR-Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy

被引:118
|
作者
Pu, Yinying [1 ]
Yin, Haohao [1 ]
Dong, Caihong [3 ,4 ]
Xiang, Huijing [2 ]
Wu, Wencheng [5 ]
Zhou, Bangguo [1 ]
Du, Dou [1 ]
Chen, Yu [2 ]
Xu, Huixiong [1 ]
机构
[1] Tongji Univ, Natl Clin Res Ctr Intervent Med,Shanghai Peoples, Dept Med Ultrasound,Clin Res Ctr Intervent Med,Sh, Ultrasound Res & Educ Inst,Sch Med,Ctr Minimally, Shanghai 200072, Peoples R China
[2] Shanghai Univ, Sch Life Sci, Shanghai Engn Res Ctr Organ Repair Materdicine La, Shanghai 200444, Peoples R China
[3] Fudan Univ, Zhongshan Hosp, Dept Ultrasound, Shanghai 200032, Peoples R China
[4] Shanghai Inst Med Imaging, Shanghai 200032, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
genomic editing; metal-organic frameworks; ROS responsive; sonodynamic therapy; tumor therapy; METAL-ORGANIC FRAMEWORKS; DELIVERY; THERAPY; CANCER; NANOSYSTEMS; MTH1; DNA;
D O I
10.1002/adma.202104641
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR-Cas9 system. Herein, sono-controllable and reactive oxygen species (ROS)-sensitive sonosensitizer-integrated metal-organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome-editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (O-1(2))-generating MOF structures anchored with CRISPR-Cas9 systems via O-1(2)-cleavable linkers, which serve not only as a delivery vector of CRISPR-Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant O-1(2) to induce SDT. The generated ROS subsequently trigger cleavage of ROS-responsive thioether bonds, thus inducing controllable release of the CRISPR-Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self-defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant O-1(2) generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine-enabled genome-editing technology.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] CRISPR/Cas9-based genome editing for multimodal synergistic cancer nanotherapy
    Pu, Yinying
    Wu, Wencheng
    Xiang, Huijing
    Chen, Yu
    Xu, Huixiong
    NANO TODAY, 2023, 48
  • [2] Development and Applications of CRISPR-Cas9 for Genome Editing
    Zhang, Feng
    HUMAN GENE THERAPY, 2014, 25 (11) : A10 - A10
  • [3] The Implications of CRISPR-Cas9 Genome Editing for IR
    Perkons, Nicholas R.
    Sheth, Rahul
    Ackerman, Daniel
    Chen, James
    Saleh, Kamiel
    Hunt, Stephen J.
    Nadolski, Gregory J.
    Shi, Junwei
    Gade, Terence P.
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2018, 29 (09) : 1264 - 1267
  • [4] CRISPR-Cas9 Mediated Genome Editing in Drosophila
    Peng, Ping
    Wang, Xia
    Shen, Da
    Sun, Jin
    Jia, Yu
    Xu, Rong-Gang
    Zhu, Li-Fei
    Ni, Jian-Quan
    BIO-PROTOCOL, 2019, 9 (02):
  • [5] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Nihongaki, Yuta
    Kawano, Fuun
    Nakajima, Takahiro
    Sato, Moritoshi
    NATURE BIOTECHNOLOGY, 2015, 33 (07) : 755 - 760
  • [6] CRISPR-Cas9 Genome Editing of Plasmodium knowlesi
    Mohring, Franziska
    Hart, Melissa N.
    Patel, Avnish
    Baker, David A.
    Moon, Robert W.
    BIO-PROTOCOL, 2020, 10 (04):
  • [7] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Yuta Nihongaki
    Fuun Kawano
    Takahiro Nakajima
    Moritoshi Sato
    Nature Biotechnology, 2015, 33 : 755 - 760
  • [8] CRISPR-Cas9 Based Bacteriophage Genome Editing
    Zhang, Xueli
    Zhang, Chaohui
    Liang, Caijiao
    Li, Bizhou
    Meng, Fanmei
    Ai, Yuncan
    MICROBIOLOGY SPECTRUM, 2022, 10 (04):
  • [9] Inducible in vivo genome editing with CRISPR-Cas9
    Dow, Lukas E.
    Fisher, Jonathan
    O'Rourke, Kevin P.
    Muley, Ashlesha
    Kastenhuber, Edward R.
    Livshits, Geulah
    Tschaharganeh, Darjus F.
    Socci, Nicholas D.
    Lowe, Scott W.
    NATURE BIOTECHNOLOGY, 2015, 33 (04) : 390 - U98
  • [10] Development and application of CRISPR-Cas9 for genome editing
    Zhang, Feng
    TRANSGENIC RESEARCH, 2014, 23 (05) : 842 - 842