Sono-Controllable and ROS-Sensitive CRISPR-Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy

被引:118
|
作者
Pu, Yinying [1 ]
Yin, Haohao [1 ]
Dong, Caihong [3 ,4 ]
Xiang, Huijing [2 ]
Wu, Wencheng [5 ]
Zhou, Bangguo [1 ]
Du, Dou [1 ]
Chen, Yu [2 ]
Xu, Huixiong [1 ]
机构
[1] Tongji Univ, Natl Clin Res Ctr Intervent Med,Shanghai Peoples, Dept Med Ultrasound,Clin Res Ctr Intervent Med,Sh, Ultrasound Res & Educ Inst,Sch Med,Ctr Minimally, Shanghai 200072, Peoples R China
[2] Shanghai Univ, Sch Life Sci, Shanghai Engn Res Ctr Organ Repair Materdicine La, Shanghai 200444, Peoples R China
[3] Fudan Univ, Zhongshan Hosp, Dept Ultrasound, Shanghai 200032, Peoples R China
[4] Shanghai Inst Med Imaging, Shanghai 200032, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
genomic editing; metal-organic frameworks; ROS responsive; sonodynamic therapy; tumor therapy; METAL-ORGANIC FRAMEWORKS; DELIVERY; THERAPY; CANCER; NANOSYSTEMS; MTH1; DNA;
D O I
10.1002/adma.202104641
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR-Cas9 system. Herein, sono-controllable and reactive oxygen species (ROS)-sensitive sonosensitizer-integrated metal-organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome-editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (O-1(2))-generating MOF structures anchored with CRISPR-Cas9 systems via O-1(2)-cleavable linkers, which serve not only as a delivery vector of CRISPR-Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant O-1(2) to induce SDT. The generated ROS subsequently trigger cleavage of ROS-responsive thioether bonds, thus inducing controllable release of the CRISPR-Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self-defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant O-1(2) generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine-enabled genome-editing technology.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Genome Editing in Cowpea Vigna unguiculata Using CRISPR-Cas9
    Ji, Jie
    Zhang, Chunyang
    Sun, Zhongfeng
    Wang, Longlong
    Duanmu, Deqiang
    Fan, Qiuling
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (10)
  • [42] Potato genome editing directed by CRISPR-Cas9 ribonucleoprotein complexes
    Khromov, Andrey V.
    Makhotenko, Antonida V.
    Kalinina, Nataila O.
    Snigir, Ekaterina A.
    Makarova, Svetlana S.
    Makarov, Valentin V.
    Suprunova, Tatyana P.
    Taliansky, Michael E.
    JOURNAL OF BIOTECHNOLOGY, 2018, 280 : S87 - S87
  • [43] CRISPR-Cas9 Genome Editing and Rapid Selection of Cell Pools
    Stoyko, Daniel
    Timothy, O.
    Hernandez, Adrianna
    Konstantinidou, Parthena
    Meng, Qingcai
    Haase, Astrid D.
    CURRENT PROTOCOLS, 2022, 2 (12):
  • [44] Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes
    Jeremy Vicencio
    Carlos Sánchez-Bolaños
    Ismael Moreno-Sánchez
    David Brena
    Charles E. Vejnar
    Dmytro Kukhtar
    Miguel Ruiz-López
    Mariona Cots-Ponjoan
    Alejandro Rubio
    Natalia Rodrigo Melero
    Jesús Crespo-Cuadrado
    Carlo Carolis
    Antonio J. Pérez-Pulido
    Antonio J. Giráldez
    Benjamin P. Kleinstiver
    Julián Cerón
    Miguel A. Moreno-Mateos
    Nature Communications, 13
  • [45] CRISPR-Cas9 genome editing in iPSCs for functional genetic screening
    Isachenko, Nadja
    Hu, Dongfang
    Chenchik, Alex
    Diehl, Paul
    Tedesco, Donato
    MOLECULAR CANCER THERAPEUTICS, 2023, 22 (12)
  • [46] Conditional Genome Editing in the Mammalian Brain Using CRISPR-Cas9
    Sun, Haojie
    Zheng, Jie
    Yi, Ming
    Wan, You
    NEUROSCIENCE BULLETIN, 2021, 37 (03) : 423 - 426
  • [47] gRNA validation for wheat genome editing with the CRISPR-Cas9 system
    Arndell, Taj
    Sharma, Niharika
    Langridge, Peter
    Baumann, Ute
    Watson-Haigh, Nathan S.
    Whitford, Ryan
    BMC BIOTECHNOLOGY, 2019, 19 (01)
  • [48] Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing
    Aslan, Cynthia
    Zolbanin, Naime Majidi
    Faraji, Fatemeh
    Jafari, Reza
    MOLECULAR BIOTECHNOLOGY, 2024, 66 (11) : 3092 - 3116
  • [49] Conditional Genome Editing in the Mammalian Brain Using CRISPR-Cas9
    Haojie Sun
    Jie Zheng
    Ming Yi
    You Wan
    NeuroscienceBulletin, 2021, 37 (03) : 423 - 426
  • [50] Expanding the genome-editing range of CRISPR-Cas9 in rice
    Xu, Xiuling
    NATIONAL SCIENCE REVIEW, 2018, 5 (01) : 6 - 6