Effect of amplitude fluctuations on the Berezinskii-Kosterlitz-Thouless transition

被引:9
|
作者
Erez, Amir [1 ]
Meir, Yigal [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 18期
关键词
DISORDERED SUPERCONDUCTORS; STATISTICAL-MECHANICS; 2-DIMENSIONAL SYSTEMS; HELICITY MODULUS; ENERGY-LEVELS; XY MODEL; TEMPERATURE;
D O I
10.1103/PhysRevB.88.184510
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) transition is a generic transition describing the loss of coherence in two-dimensional systems and has been invoked, for example, to describe the superconductor-insulator transition in thin films. However, recent experiments have shown that the BKT transition, driven by phase fluctuations, is not sufficient to describe the loss of superconducting order, and amplitude fluctuations must also be taken into account. The standard models that are extensively used to model two-dimensional superconductors are the Hubbard and XY models. Whereas the XY model allows only phase fluctuations, the Hubbard model has an extra degree of freedom: amplitude fluctuations. In this paper we compare two Hubbard models with the same critical temperature but with different interactions and deduce the role of the amplitude fluctuations in the superconducting transition. For this purpose, a novel approximation is presented and used. We derive an effective phase-only (XY) Hamiltonian, incorporating amplitude fluctuations in an explicit temperature dependence of the phase rigidity. We study the relation between amplitude fluctuations and coupling strength. Our results support existing claims about the suppression of phase rigidity due to amplitude fluctuations not present in the XY model.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] The Berezinskii-Kosterlitz-Thouless transition in imbalanced 2D Fermi gases: The role of fluctuations
    Tempere, J.
    Klimin, S. N.
    Devreese, J. T.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (19): : 809 - 813
  • [42] Fractonic Berezinskii-Kosterlitz-Thouless transition from a renormalization group perspective
    Grosvenor, Kevin T.
    Lier, Ruben
    Surowka, Piotr
    [J]. PHYSICAL REVIEW B, 2023, 107 (04)
  • [43] Berezinskii-Kosterlitz-Thouless transition uncovered by the fidelity susceptibility in the XXZ model
    Wang, Bo
    Feng, Mang
    Chen, Ze-Qian
    [J]. PHYSICAL REVIEW A, 2010, 81 (06):
  • [44] Observation of the Berezinskii-Kosterlitz-Thouless Phase Transition in an Ultracold Fermi Gas
    Murthy, P. A.
    Boettcher, I.
    Bayha, L.
    Holzmann, M.
    Kedar, D.
    Neidig, M.
    Ries, M. G.
    Wenz, A. N.
    Zuern, G.
    Jochim, S.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (01)
  • [45] Finite-size scaling method for the Berezinskii-Kosterlitz-Thouless transition
    Hsieh, Yun-Da
    Kao, Ying-Jer
    Sandvik, Anders W.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [46] Study of the Berezinskii-Kosterlitz-Thouless transition: an unsupervised machine learning approach
    Haldar, Sumit
    Rahaman, S. K. Saniur
    Kumar, Manoranjan
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (41)
  • [47] Berezinskii-Kosterlitz-Thouless transition transport in spin-triplet superconductor
    Chung, Suk Bum
    Kim, Se Kwon
    [J]. SCIPOST PHYSICS CORE, 2022, 5 (01):
  • [48] Berezinskii-Kosterlitz-Thouless crossover in a photonic lattice
    Small, Eran
    Pugatch, Rami
    Silberberg, Yaron
    [J]. PHYSICAL REVIEW A, 2011, 83 (01):
  • [49] More holographic Berezinskii-Kosterlitz-Thouless transitions
    Jensen, Kristan
    [J]. PHYSICAL REVIEW D, 2010, 82 (04):
  • [50] Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas
    Tempere, J.
    Klimin, S. N.
    Devreese, J. T.
    [J]. PHYSICAL REVIEW A, 2009, 79 (05):