Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas

被引:49
|
作者
Tempere, J. [1 ,2 ]
Klimin, S. N. [1 ]
Devreese, J. T. [1 ,3 ]
机构
[1] Univ Antwerp, TFVS, B-2020 Antwerp, Belgium
[2] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA
[3] Tech Univ Eindhoven, NL-5600 MB Eindhoven, Netherlands
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
关键词
boson systems; critical points; fermion systems; fluctuations; phase diagrams; phase separation; phase transformations; superfluidity; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; SUPERCONDUCTIVITY; BCS; TEMPERATURE; CROSSOVER; EVOLUTION; SYSTEMS; DIAGRAM;
D O I
10.1103/PhysRevA.79.053637
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes the breakdown of superfluidity in a two-dimensional Bose gas or a two-dimensional gas of paired fermions. In the latter case, a population imbalance between the two pairing partners in the Fermi mixture is known to influence pairing characteristics. Here, we investigate the effects of imbalance on the two-dimensional BKT superfluid transition and show that superfluidity is even more sensitive to imbalance than for three-dimensional systems. Finite-temperature phase diagrams are derived using the functional integral formalism in combination with a hydrodynamic action functional for the phase fluctuations. This allows to identify a phase-separation region and tricritical points due to imbalance. In contrast to superfluidity in the three-dimensional case, the effect of imbalance is also pronounced in the strong-coupling regime.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Observation of the Berezinskii-Kosterlitz-Thouless Phase Transition in an Ultracold Fermi Gas
    Murthy, P. A.
    Boettcher, I.
    Bayha, L.
    Holzmann, M.
    Kedar, D.
    Neidig, M.
    Ries, M. G.
    Wenz, A. N.
    Zuern, G.
    Jochim, S.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (01)
  • [2] New insight into the Berezinskii-Kosterlitz-Thouless phase transition
    Gerber, Urs
    Bietenholz, Wolfgang
    Rejon-Barrera, Fernando G.
    [J]. XIV MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2015, 651
  • [3] Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of strained graphene
    Xu, Feng
    Zhang, Lei
    Jiang, Liyun
    Mou, Chung-Yu
    [J]. CHINESE JOURNAL OF PHYSICS, 2021, 70 : 288 - 296
  • [4] Effect of amplitude fluctuations on the Berezinskii-Kosterlitz-Thouless transition
    Erez, Amir
    Meir, Yigal
    [J]. PHYSICAL REVIEW B, 2013, 88 (18):
  • [5] Uniaxial modulation and the Berezinskii-Kosterlitz-Thouless transition
    Giuliano, Domenico
    Nguyen, Phong H.
    Nava, Andrea
    Boninsegni, Massimo
    [J]. PHYSICAL REVIEW B, 2023, 107 (19)
  • [6] Disordered Berezinskii-Kosterlitz-Thouless transition and superinsulation
    Sankar, S.
    Vinokur, V. M.
    Tripathi, V.
    [J]. PHYSICAL REVIEW B, 2018, 97 (02)
  • [7] Superfluid density and critical velocity near the Berezinskii-Kosterlitz-Thouless transition in a two-dimensional strongly interacting Fermi gas
    Mulkerin, Brendan C.
    He, Lianyi
    Dyke, Paul
    Vale, Chris J.
    Liu, Xia-Ji
    Hu, Hui
    [J]. PHYSICAL REVIEW A, 2017, 96 (05)
  • [8] Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene
    Julku, A.
    Peltonen, T. J.
    Liang, L.
    Heikkila, T. T.
    Torma, P.
    [J]. PHYSICAL REVIEW B, 2020, 101 (06)
  • [9] Suppression effect on the Berezinskii-Kosterlitz-Thouless transition in growing networks
    Oh, S. M.
    Son, S-W
    Kahng, B.
    [J]. PHYSICAL REVIEW E, 2018, 98 (06)
  • [10] Berezinskii-Kosterlitz-Thouless phase transition in systems with exotic symmetries
    Bulgadaev, SA
    [J]. JETP LETTERS, 1996, 63 (09) : 780 - 785