Suppression effect on the Berezinskii-Kosterlitz-Thouless transition in growing networks

被引:8
|
作者
Oh, S. M. [1 ,2 ]
Son, S-W [3 ,4 ]
Kahng, B. [1 ,2 ]
机构
[1] Seoul Natl Univ, CCSS, CTP, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[3] Hanyang Univ, Dept Appl Phys, Ansan 15588, South Korea
[4] Asia Pacific Ctr Theoret Phys, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
LONG-RANGE ORDER; EXPLOSIVE PERCOLATION;
D O I
10.1103/PhysRevE.98.060301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The percolation transition in growing networks can be of infinite order, following the Berezinskii-Kosterlitz-Thouless (BKT) transition. Examples can be found in diverse systems, including coauthorship networks and protein interaction networks. Here, we investigate how such an infinite-order percolation transition is changed by the global suppression (GS) effect. We find that the BKT infinite-order transition breaks down, but the features of infinite-order, second-order, and first-order transitions all emerge in a single framework. Owing to the GS effect, the transition point p(c) is delayed, below which the critical region is extended. The power-law behavior of the cluster size distribution reaches the state with the exponent tau = 2 at p(c,) suggesting that the system has the maximum diversity of cluster sizes and a first-order percolation transition occurs at p(c).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Effect of amplitude fluctuations on the Berezinskii-Kosterlitz-Thouless transition
    Erez, Amir
    Meir, Yigal
    [J]. PHYSICAL REVIEW B, 2013, 88 (18):
  • [2] Uniaxial modulation and the Berezinskii-Kosterlitz-Thouless transition
    Giuliano, Domenico
    Nguyen, Phong H.
    Nava, Andrea
    Boninsegni, Massimo
    [J]. PHYSICAL REVIEW B, 2023, 107 (19)
  • [3] Disordered Berezinskii-Kosterlitz-Thouless transition and superinsulation
    Sankar, S.
    Vinokur, V. M.
    Tripathi, V.
    [J]. PHYSICAL REVIEW B, 2018, 97 (02)
  • [4] Detection of Berezinskii-Kosterlitz-Thouless transition via generative adversarial networks
    Contessi, Daniele
    Ricci, Elisa
    Recati, Alessio
    Rizzi, Matteo
    [J]. SCIPOST PHYSICS, 2022, 12 (03):
  • [5] Berezinskii-Kosterlitz-Thouless Transition in Ultrathin Niobium Films
    Altanany, S. M.
    Zajcewa, I.
    Minikayev, R.
    Cieplak, M. Z.
    [J]. ACTA PHYSICA POLONICA A, 2023, 143 (02) : 129 - 133
  • [6] Broadening of the Berezinskii-Kosterlitz-Thouless transition by correlated disorder
    Maccari, I.
    Benfatto, L.
    Castellani, C.
    [J]. PHYSICAL REVIEW B, 2017, 96 (06)
  • [7] Berezinskii-Kosterlitz-Thouless transition with a constraint lattice action
    Bietenholz, Wolfgang
    Gerber, Urs
    Rejon-Barrera, Fernando G.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [8] Phase transition with the Berezinskii-Kosterlitz-Thouless singularity in the Ising model on a growing network
    Bauer, M
    Coulomb, S
    Dorogovtsev, SN
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (20)
  • [9] Berezinskii-Kosterlitz-Thouless transition in rhenium nitride films
    Takiguchi, Kosuke
    Krockenberger, Yoshiharu
    Taniyasu, Yoshitaka
    Yamamoto, Hideki
    [J]. PHYSICAL REVIEW B, 2024, 110 (02)
  • [10] Flux noise near the Berezinskii-Kosterlitz-Thouless transition
    Wagenblast, KH
    Fazio, R
    [J]. JETP LETTERS, 1998, 68 (04) : 312 - 316