Phase transition with the Berezinskii-Kosterlitz-Thouless singularity in the Ising model on a growing network

被引:32
|
作者
Bauer, M [1 ]
Coulomb, S
Dorogovtsev, SN
机构
[1] CEA Saclay, CNRS, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal
[3] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
关键词
D O I
10.1103/PhysRevLett.94.200602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the ferromagnetic Ising model on a highly inhomogeneous network created by a growth process. We find that the phase transition in this system is characterized by the Berezinskii-Kosterlitz-Thouless singularity, although critical fluctuations are absent and the mean-field description is exact. Below this infinite order transition, the magnetization behaves as exp(-const/root T-c-T). We show that the critical point separates the phase with the power-law distribution of the linear response to a local field and the phase where this distribution rapidly decreases. We suggest that this phase transition occurs in a wide range of cooperative models with a strong infinite-range inhomogeneity.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Phase transition with the Berezinskii-Kosterlitz-Thouless singularity in the ising model on a growing network (vol 94, pg 200602, 2005)
    Bauer, M
    Coulomb, S
    Dorogovtsev, SN
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (10)
  • [2] Suppression effect on the Berezinskii-Kosterlitz-Thouless transition in growing networks
    Oh, S. M.
    Son, S-W
    Kahng, B.
    [J]. PHYSICAL REVIEW E, 2018, 98 (06)
  • [3] New insight into the Berezinskii-Kosterlitz-Thouless phase transition
    Gerber, Urs
    Bietenholz, Wolfgang
    Rejon-Barrera, Fernando G.
    [J]. XIV MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2015, 651
  • [4] Uniaxial modulation and the Berezinskii-Kosterlitz-Thouless transition
    Giuliano, Domenico
    Nguyen, Phong H.
    Nava, Andrea
    Boninsegni, Massimo
    [J]. PHYSICAL REVIEW B, 2023, 107 (19)
  • [5] Berezinskii-Kosterlitz-Thouless transition from neural network flows
    Ng, Kwai-Kong
    Huang, Ching-Yu
    Lin, Feng-Li
    [J]. PHYSICAL REVIEW E, 2023, 108 (03)
  • [6] Disordered Berezinskii-Kosterlitz-Thouless transition and superinsulation
    Sankar, S.
    Vinokur, V. M.
    Tripathi, V.
    [J]. PHYSICAL REVIEW B, 2018, 97 (02)
  • [7] Berezinskii-Kosterlitz-Thouless phase transition in systems with exotic symmetries
    Bulgadaev, SA
    [J]. JETP LETTERS, 1996, 63 (09) : 780 - 785
  • [8] Periodic quenches across the Berezinskii-Kosterlitz-Thouless phase transition
    Brown, K.
    Bland, T.
    Comaron, P.
    Proukakis, N. P.
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [9] Longitudinal fluctuations in the Berezinskii-Kosterlitz-Thouless phase
    Jakubczyk, Pawel
    Metzner, Walter
    [J]. PHYSICAL REVIEW B, 2017, 95 (08)
  • [10] Observation of the Berezinskii-Kosterlitz-Thouless Phase Transition in an Ultracold Fermi Gas
    Murthy, P. A.
    Boettcher, I.
    Bayha, L.
    Holzmann, M.
    Kedar, D.
    Neidig, M.
    Ries, M. G.
    Wenz, A. N.
    Zuern, G.
    Jochim, S.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (01)