Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of strained graphene

被引:0
|
作者
Xu, Feng [1 ,2 ]
Zhang, Lei [1 ,2 ]
Jiang, Liyun [1 ,2 ]
Mou, Chung-Yu [3 ,4 ,5 ]
机构
[1] Shaanxi Univ Technol, Sch Phys & Telecommun Engn, Hanzhong 723001, Peoples R China
[2] Shaanxi Univ Technol, Shaanxi Key Lab Catalysis, Inst Graphene, Hanzhong 723001, Peoples R China
[3] Natl Ctr Theoret Sci, Phys Div, POB 2-131, Hsinchu, Taiwan
[4] Natl Tsing Hua Univ, Ctr Quantum Technol, Hsinchu 30043, Taiwan
[5] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30043, Taiwan
基金
美国国家科学基金会;
关键词
SUPERCONDUCTIVITY; INSULATOR; DENSITY; SYSTEMS; PHYSICS; STATES;
D O I
10.1016/j.cjph.2021.01.009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the superfluid weight and Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for highly unconventional superconducting states with the coexistence of chiral d-wave superconductivity, charge density waves and pair density waves in the strained graphene. Our results show that the strain-induced flat bands can promote the superconducting transition temperature approximately 50% compared to that of the original doped graphene, which suggests that the flat-band superconductivity is a potential route to get superconductivity with higher critical temperatures. In particular, we obtain the superfluid weight for the pure superconducting pair-density-wave states from which the deduced superconducting transition temperature is shown to be much lower than the gap-opening temperature of the pair density wave, which is helpful to understand the phenomenon of the pseudogap state in high-T-c cuprate superconductors. Finally, we show that the BKT transition temperature versus doping for strained graphene exhibits a dome-like shape and it depends linearly on the spin-spin interaction strength.
引用
收藏
页码:288 / 296
页数:9
相关论文
共 50 条
  • [1] Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene
    Julku, A.
    Peltonen, T. J.
    Liang, L.
    Heikkila, T. T.
    Torma, P.
    [J]. PHYSICAL REVIEW B, 2020, 101 (06)
  • [2] Uniaxial modulation and the Berezinskii-Kosterlitz-Thouless transition
    Giuliano, Domenico
    Nguyen, Phong H.
    Nava, Andrea
    Boninsegni, Massimo
    [J]. PHYSICAL REVIEW B, 2023, 107 (19)
  • [3] Disordered Berezinskii-Kosterlitz-Thouless transition and superinsulation
    Sankar, S.
    Vinokur, V. M.
    Tripathi, V.
    [J]. PHYSICAL REVIEW B, 2018, 97 (02)
  • [4] Berezinskii-Kosterlitz-Thouless Transition in Ultrathin Niobium Films
    Altanany, S. M.
    Zajcewa, I.
    Minikayev, R.
    Cieplak, M. Z.
    [J]. ACTA PHYSICA POLONICA A, 2023, 143 (02) : 129 - 133
  • [5] Broadening of the Berezinskii-Kosterlitz-Thouless transition by correlated disorder
    Maccari, I.
    Benfatto, L.
    Castellani, C.
    [J]. PHYSICAL REVIEW B, 2017, 96 (06)
  • [6] Berezinskii-Kosterlitz-Thouless transition with a constraint lattice action
    Bietenholz, Wolfgang
    Gerber, Urs
    Rejon-Barrera, Fernando G.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [7] Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas
    Tempere, J.
    Klimin, S. N.
    Devreese, J. T.
    [J]. PHYSICAL REVIEW A, 2009, 79 (05):
  • [8] Flux noise near the Berezinskii-Kosterlitz-Thouless transition
    Wagenblast, KH
    Fazio, R
    [J]. JETP LETTERS, 1998, 68 (04) : 312 - 316
  • [9] Effect of amplitude fluctuations on the Berezinskii-Kosterlitz-Thouless transition
    Erez, Amir
    Meir, Yigal
    [J]. PHYSICAL REVIEW B, 2013, 88 (18):
  • [10] Berezinskii-Kosterlitz-Thouless transition in rhenium nitride films
    Takiguchi, Kosuke
    Krockenberger, Yoshiharu
    Taniyasu, Yoshitaka
    Yamamoto, Hideki
    [J]. PHYSICAL REVIEW B, 2024, 110 (02)