Optimal prediction of quantile functional linear regression in reproducing kernel Hilbert spaces

被引:7
|
作者
Li, Rui [1 ]
Lu, Wenqi [2 ,3 ]
Zhu, Zhongyi [2 ]
Lian, Heng [3 ]
机构
[1] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
[2] Fudan Univ, Dept Stat, Shanghai 200433, Peoples R China
[3] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
Convergence rate; Prediction risk; Quantile regression; Rademacher complexity; MODELS; ESTIMATORS;
D O I
10.1016/j.jspi.2020.06.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile functional linear regression was previously studied using functional principal component analysis. Here we consider the alternative penalized estimator based on the reproducing kernel Hilbert spaces (RKHS) setting. The motivation is that, for the functional linear (mean) regression, it has already been shown in Cai and Yuan (2012) that the approach based on RKHS performs better when the coefficient function does not align well with the eigenfunctions of the covariance kernel. We establish its optimal convergence rate in prediction risk using the Rademacher complexity to bound appropriate empirical processes. Some Monte Carlo studies are carried out for illustration. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 50 条
  • [31] Asynchronous functional linear regression models for longitudinal data in reproducing kernel Hilbert space
    Li, Ting
    Zhu, Huichen
    Li, Tengfei
    Zhu, Hongtu
    [J]. BIOMETRICS, 2023, 79 (03) : 1880 - 1895
  • [32] Quantile regression with an epsilon-insensitive loss in a reproducing kernel Hilbert space
    Park, Jinho
    Kim, Jeankyung
    [J]. STATISTICS & PROBABILITY LETTERS, 2011, 81 (01) : 62 - 70
  • [33] ORACLE INEQUALITIES FOR SPARSE ADDITIVE QUANTILE REGRESSION IN REPRODUCING KERNEL HILBERT SPACE
    Lv, Shaogao
    Lin, Huazhen
    Lian, Heng
    Huang, Jian
    [J]. ANNALS OF STATISTICS, 2018, 46 (02): : 781 - 813
  • [34] Optimal Transport in Reproducing Kernel Hilbert Spaces: Theory and Applications
    Zhang, Zhen
    Wang, Mianzhi
    Nehorai, Arye
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) : 1741 - 1754
  • [35] Statistical performance of optimal scoring in reproducing kernel Hilbert spaces
    Chen, Heng
    Chen, Di-Rong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 194 : 122 - 135
  • [36] Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces
    Mutny, Mojmir
    Krause, Andreas
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [37] Functional additive expectile regression in the reproducing kernel Hilbert space
    Liu, Yuzi
    Peng, Ling
    Liu, Qing
    Lian, Heng
    Liu, Xiaohui
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198
  • [38] Reproducing Kernel Hilbert Spaces With Odd Kernels in Price Prediction
    Krejnik, Milos
    Tyutin, Anton
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (10) : 1564 - 1573
  • [39] Nonlinear functional models for functional responses in reproducing kernel Hilbert spaces
    Lian, Heng
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (04): : 597 - 606
  • [40] A FUNCTIONAL DECOMPOSITION OF FINITE BANDWIDTH REPRODUCING KERNEL HILBERT SPACES
    Adams, Gregory T.
    Wagner, Nathan A.
    [J]. OPERATORS AND MATRICES, 2021, 15 (04): : 1521 - 1539