Quantile regression with an epsilon-insensitive loss in a reproducing kernel Hilbert space

被引:6
|
作者
Park, Jinho [1 ]
Kim, Jeankyung [1 ]
机构
[1] Inha Univ, Dept Stat, Inchon 402751, South Korea
关键词
Epsilon-insensitive loss; Quantile regression; Reproducing kernel Hilbert space;
D O I
10.1016/j.spl.2010.09.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a method to estimate the conditional quantile function using an epsilon-insensitive loss in a reproducing kernel Hilbert space. When choosing a smoothing parameter in nonparametric frameworks, it is necessary to evaluate the complexity of the model. In this regard, we provide a simple formula for computing an effective number of parameters when implementing an epsilon-insensitive loss. We also investigate the effects of the epsilon-insensitive loss. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 70
页数:9
相关论文
共 50 条