Optimal prediction of quantile functional linear regression in reproducing kernel Hilbert spaces

被引:7
|
作者
Li, Rui [1 ]
Lu, Wenqi [2 ,3 ]
Zhu, Zhongyi [2 ]
Lian, Heng [3 ]
机构
[1] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
[2] Fudan Univ, Dept Stat, Shanghai 200433, Peoples R China
[3] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
Convergence rate; Prediction risk; Quantile regression; Rademacher complexity; MODELS; ESTIMATORS;
D O I
10.1016/j.jspi.2020.06.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile functional linear regression was previously studied using functional principal component analysis. Here we consider the alternative penalized estimator based on the reproducing kernel Hilbert spaces (RKHS) setting. The motivation is that, for the functional linear (mean) regression, it has already been shown in Cai and Yuan (2012) that the approach based on RKHS performs better when the coefficient function does not align well with the eigenfunctions of the covariance kernel. We establish its optimal convergence rate in prediction risk using the Rademacher complexity to bound appropriate empirical processes. Some Monte Carlo studies are carried out for illustration. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 50 条
  • [21] Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial
    Nosedal-Sanchez, Alvaro
    Storlie, Curtis B.
    Lee, Thomas C. M.
    Christensen, Ronald
    [J]. AMERICAN STATISTICIAN, 2012, 66 (01): : 50 - 60
  • [22] Flexible Expectile Regression in Reproducing Kernel Hilbert Spaces
    Yang, Yi
    Zhang, Teng
    Zou, Hui
    [J]. TECHNOMETRICS, 2018, 60 (01) : 26 - 35
  • [23] On the Vγ dimension for regression in Reproducing Kernel Hilbert Spaces
    Evgeniou, T
    Pontil, M
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 1999, 1720 : 106 - 117
  • [24] FUNCTIONAL SLICED INVERSE REGRESSION IN A REPRODUCING KERNEL HILBERT SPACE: A THEORETICAL CONNECTION TO FUNCTIONAL LINEAR REGRESSION
    Wang, Guochang
    Lian, Heng
    [J]. STATISTICA SINICA, 2020, 30 (01) : 17 - 33
  • [25] Optimal sampling points in reproducing kernel Hilbert spaces
    Wang, Rui
    Zhang, Haizhang
    [J]. JOURNAL OF COMPLEXITY, 2016, 34 : 129 - 151
  • [26] OPTIMAL APPROXIMATION IN HILBERT SPACES WITH REPRODUCING KERNEL FUNCTIONS
    LARKIN, FM
    [J]. MATHEMATICS OF COMPUTATION, 1970, 24 (112) : 911 - &
  • [27] Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits
    Gianola, Daniel
    van Kaam, Johannes B. C. H. M.
    [J]. GENETICS, 2008, 178 (04) : 2289 - 2303
  • [28] On the Use of Reproducing Kernel Hilbert Spaces in Functional Classification
    Berrendero, Jose R.
    Cuevas, Antonio
    Torrecilla, Jose L.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (523) : 1210 - 1218
  • [29] On-line regression competitive with reproducing kernel Hilbert spaces
    Vovk, Vladimir
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2006, 3959 : 452 - 463
  • [30] Reproducing kernel hilbert spaces
    Seddighi, K.
    [J]. Iranian Journal of Science & Technology, 1993, 17 (03):