Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial

被引:13
|
作者
Nosedal-Sanchez, Alvaro [1 ]
Storlie, Curtis B. [2 ]
Lee, Thomas C. M. [3 ]
Christensen, Ronald [4 ]
机构
[1] Indiana Univ Penn, Dept Math, Indiana, PA 15705 USA
[2] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA
[3] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[4] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
来源
AMERICAN STATISTICIAN | 2012年 / 66卷 / 01期
基金
美国国家科学基金会;
关键词
Projection principle; Regularization; Representation Theorem; Ridge Regression; Smoothing Splines; SELECTION;
D O I
10.1080/00031305.2012.678196
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Penalized regression procedures have become very popular ways to estimate complicated functions. The smoothing spline, for example, is the solution of a minimization problem in a functional space. If such a minimization problem is posed on a reproducing kernel Hilbert space (RKHS), the solution is guaranteed to exist, is unique, and has a very simple form. There are excellent books and articles about RKHS and their applications in statistics; however, this existing literature is very dense. This article provides a friendly reference for a reader approaching this subject for the first time. It begins with a simple problem, a system of linear equations, and then gives an intuitive motivation for reproducing kernels. Armed with the intuition gained from our first examples, we take the reader from vector spaces to Banach spaces and to RKHS. Finally, we present some statistical estimation problems that can be solved using the mathematical machinery discussed. After reading this tutorial, the reader will be ready to study more advanced texts and articles about the subject, such as those by Wahba or Gu. Online supplements are available for this article.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 50 条
  • [31] Factorizations of Kernels and Reproducing Kernel Hilbert Spaces
    Kumari, Rani
    Sarkar, Jaydeb
    Sarkar, Srijan
    Timotin, Dan
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 87 (02) : 225 - 244
  • [32] Factorizations of Kernels and Reproducing Kernel Hilbert Spaces
    Rani Kumari
    Jaydeb Sarkar
    Srijan Sarkar
    Dan Timotin
    [J]. Integral Equations and Operator Theory, 2017, 87 : 225 - 244
  • [33] Metamorphosis of images in reproducing kernel Hilbert spaces
    Casey L. Richardson
    Laurent Younes
    [J]. Advances in Computational Mathematics, 2016, 42 : 573 - 603
  • [34] Koopman spectra in reproducing kernel Hilbert spaces
    Das, Suddhasattwa
    Giannakis, Dimitrios
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (02) : 573 - 607
  • [35] ON THE INCLUSION RELATION OF REPRODUCING KERNEL HILBERT SPACES
    Zhang, Haizhang
    Zhao, Liang
    [J]. ANALYSIS AND APPLICATIONS, 2013, 11 (02)
  • [36] Symmetric Operators and Reproducing Kernel Hilbert Spaces
    R. T. W. Martin
    [J]. Complex Analysis and Operator Theory, 2010, 4 : 845 - 880
  • [37] Riccati inequalities and reproducing kernel Hilbert spaces
    Dubi, Chen
    Dym, Harry
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 458 - 482
  • [38] Linear dynamics in reproducing kernel Hilbert spaces
    Mundayadan, Aneesh
    Sarkar, Jaydeb
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 159
  • [39] VARIOUS INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES
    Nguyen Du Vi Nhan
    Dinh Thanh Duc
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (01): : 221 - 237
  • [40] ON APPROXIMATION BY SPHERICAL REPRODUCING KERNEL HILBERT SPACES
    Zhixiang Chen (Shaoxing College of Arts and Sciences
    [J]. Analysis in Theory and Applications, 2007, (04) : 325 - 333