NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION

被引:14
|
作者
Georgiev, Bogdan [1 ]
Mukherjee, Mayukh [1 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
来源
ANALYSIS & PDE | 2018年 / 11卷 / 01期
关键词
Laplace eigenfunctions; nodal domains; Brownian motion; INNER RADIUS; EIGENVALUE; EIGENFUNCTIONS; MANIFOLDS; DOMAINS; SETS;
D O I
10.2140/apde.2018.11.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use tools from n-dimensional Brownian motion in conjunction with the Feynman-Kac formulation of heat diffusion to study nodal geometry on a compact Riemannian manifold M. On one hand we extend a theorem of Lieb (1983) and prove that any Laplace nodal domain Omega(lambda) subset of M almost fully contains a ball of radius similar to 1/root lambda(1)(Omega(lambda)) and such a ball can be centred at any point of maximum of the Dirichlet ground state phi(lambda 1)(Omega(lambda))This also gives a slight refinement of a result by Mangoubi (2008) concerning the inradius of nodal domains. On the other hand, we also prove that no nodal domain can be contained in a reasonably narrow tubular neighbourhood of unions of finitely many submanifolds inside M.
引用
下载
收藏
页码:133 / 148
页数:16
相关论文
共 50 条